

Graphtik

[image: Supported Python versions of latest release in PyPi] [https://pypi.python.org/pypi/graphtik/] [image: Development Status] [https://pypi.python.org/pypi/graphtik/] (src: 4.0.0, git: v4.0.0
, Dec 11, 2019) [image: Latest release in GitHub] [https://github.com/pygraphkit/graphtik/releases] [image: Latest version in PyPI] [https://pypi.python.org/pypi/graphtik/]
[image: Travis continuous integration testing ok? (Linux)] [https://travis-ci.org/pygraphkit/graphtik/builds] [image: ReadTheDocs ok?] [https://graphtik.readthedocs.org] [image: cover-status] [https://codecov.io/gh/pygraphkit/graphtik] [image: Code Style] [https://github.com/ambv/black] [image: Apache License, version 2.0] [https://www.apache.org/licenses/LICENSE-2.0]

[image: Github watchers] [https://github.com/pygraphkit/graphtik] [image: Github stargazers] [https://github.com/pygraphkit/graphtik] [image: Github forks] [https://github.com/pygraphkit/graphtik] [image: Issues count] [https://github.com/pygraphkit/graphtik/issues]

It’s a DAG all the way down!

[image: sample graphtik plot]

Lightweight computation graphs for Python

Graphtik is an an understandable and lightweight Python module for building and running
ordered graphs of computations.
The API posits a fair compromise between features and complexity, without precluding any.
It can be used as is to build machine learning pipelines for data science projects.
It should be extendable to act as the core for a custom ETL engine or
a workflow-processor for interdependent files and processes.

Graphtik sprang from Graphkit [https://github.com/yahoo/graphkit] to experiment with Python 3.6+ features.

	1. Operations
	Operations are just functions

	Specifying graph structure: provides and needs

	Instantiating operations
	Decorator specification

	Functional specification

	Modifiers on operation inputs and outputs
	Optionals

	Varargs

	Sideffects

	2. Graph Composition
	The compose factory

	Simple composition of operations

	Running a computation graph
	Producing a subset of outputs

	Short-circuiting a graph computation

	Adding on to an existing computation graph

	More complicated composition: merging computation graphs

	3. Plotting and Debugging
	Plotting

	Errors & debugging

	Execution internals

	4. API Reference
	Package: graphtik

	Module: base

	Module: op

	Module: netop

	Module: network

	Module: plot

	5. Changes
	TODO

	v4.0.0 (11 Dec 2019, @ankostis): NESTED merge, revert v3.x Unvarying, immutable OPs, “color” nodes

	v3.1.0 (6 Dec 2019, @ankostis): cooler prune()

	v3.0.0 (2 Dec 2019, @ankostis): UNVARYING NetOperations, narrowed, API refact

	v2.3.0 (24 Nov 2019, @ankostis): Zoomable SVGs & more op jobs

	v2.2.0 (20 Nov 2019, @ankostis): enhance OPERATIONS & restruct their modules

	v2.1.1 (12 Nov 2019, @ankostis): global configs

	v2.1.0 (20 Oct 2019, @ankostis): DROP BW-compatible, Restruct modules/API, Plan perfect evictions

	v2.0.0b1 (15 Oct 2019, @ankostis): Rebranded as Graphtik for Python 3.6+
	Network

	Testing & other code:

	v1.3.0 (Oct 2019, @ankostis): NEVER RELEASED: new DAG solver, better plotting & “sideffect”
	Network:

	Plotting:

	Testing & other code:

	Chore & Docs:

	v1.2.4 (Mar 7, 2018)

	1.2.2 (Mar 7, 2018, @huyng): Fixed versioning

	1.2.1 (Feb 23, 2018, @huyng): Fixed multi-threading bug and faster compute through caching of find_necessary_steps

	1.2.0 (Feb 13, 2018, @huyng)

	1.1.0 (Nov 9, 2017, @huyng)

	1.0.4 (Nov 3, 2017, @huyng): Networkx 2.0 compatibility

	1.0.3 (Jan 31, 2017, @huyng): Make plotting dependencies optional

	1.0.2 (Sep 29, 2016, @pumpikano): Merge pull request yahoo#5 from yahoo/remove-packaging-dep

	1.0.1 (Aug 24, 2016)

	1.0 (Aug 2, 2016, @robwhess)

Quick start

Here’s how to install:

pip install graphtik

OR with dependencies for plotting support (and you need to install Graphviz [https://graphviz.org] program separately with your OS tools):

pip install graphtik[plot]

Here’s a Python script with an example Graphtik computation graph that produces multiple outputs (a * b, a - a * b, and abs(a - a * b) ** 3):

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

Computes |a|^p.
>>> def abspow(a, p):
... c = abs(a) ** p
... return c

Compose the mul, sub, and abspow functions into a computation graph:

>>> graphop = compose("graphop",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
... operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed"])
... (partial(abspow, p=3))
...)

Run the graph-operation and request all of the outputs:

>>> graphop(**{'a': 2, 'b': 5})
{'a': 2, 'b': 5, 'ab': 10, 'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

Run the graph-operation and request a subset of the outputs:

>>> graphop.compute({'a': 2, 'b': 5}, outputs=["a_minus_ab"])
{'a_minus_ab': -8}

As you can see, any function can be used as an operation in Graphtik,
even ones imported from system modules!

1. Operations

At a high level, an operation is a node in a computation graph.
Graphtik uses an Operation class to abstractly represent these computations.
The class specifies the requirments for a function to participate
in a computation graph; those are its input-data needs, and the output-data
it provides.

The FunctionalOperation provides a lightweight wrapper
around an arbitrary function to define those specifications.

	
class graphtik.op.Operation[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L44]

	An abstract class representing an action with compute().

	
compute(named_inputs, outputs=None)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L47]

	Compute (optional) asked outputs for the given named_inputs.

It is called by Network.
End-users should simply call the operation with named_inputs as kwargs.

	Parameters

	named_inputs (list) – the input values with which to feed the computation.

	Returns list

	Should return a list values representing
the results of running the feed-forward computation on
inputs.

There is a better way to instantiate an FunctionalOperation than simply constructing it,
and we’ll get to it later.
First off, though, here’s the specifications for the operation classes:

	
class graphtik.op.FunctionalOperation[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L64]

	An Operation performing a callable (ie function, method, lambda).

Use operation() factory to build instances of this class instead.

	
compute(named_inputs, outputs=None) → dict[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L200]

	Compute (optional) asked outputs for the given named_inputs.

It is called by Network.
End-users should simply call the operation with named_inputs as kwargs.

	Parameters

	named_inputs (list) – the input values with which to feed the computation.

	Returns list

	Should return a list values representing
the results of running the feed-forward computation on
inputs.

	
__call__(*args, **kwargs)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L271]

	Call self as a function.

	
__init__[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py]

	Initialize self. See help(type(self)) for accurate signature.

Operations are just functions

At the heart of each operation is just a function, any arbitrary function.
Indeed, you can instantiate an operation with a function and then call it
just like the original function, e.g.:

>>> from operator import add
>>> from graphtik import operation

>>> add_op = operation(name='add_op', needs=['a', 'b'], provides=['a_plus_b'])(add)

>>> add_op(3, 4) == add(3, 4)
True

Specifying graph structure: provides and needs

Of course, each operation is more than just a function.
It is a node in a computation graph, depending on other nodes in the graph for input data and
supplying output data that may be used by other nodes in the graph (or as a graph output).
This graph structure is specified via the provides and needs arguments
to the operation constructor. Specifically:

	provides: this argument names the outputs (i.e. the returned values) of a given operation.
If multiple outputs are specified by provides, then the return value of the function
comprising the operation must return an iterable.

	needs: this argument names data that is needed as input by a given operation.
Each piece of data named in needs may either be provided by another operation
in the same graph (i.e. specified in the provides argument of that operation),
or it may be specified as a named input to a graph computation
(more on graph computations here).

When many operations are composed into a computation graph (see Graph Composition for more on that),
Graphtik matches up the values in their needs and provides to form the edges of that graph.

Let’s look again at the operations from the script in Quick start, for example:

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

>>> # Computes |a|^p.
>>> def abspow(a, p):
... c = abs(a) ** p
... return c

>>> # Compose the mul, sub, and abspow operations into a computation graph.
>>> graphop = compose("graphop",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
... operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed"])
... (partial(abspow, p=3))
...)

Tip

Notice the use of functools.partial() to set parameter p to a contant value.

The needs and provides arguments to the operations in this script define
a computation graph that looks like this (where the oval are operations,
squares/houses are data):

[image: _images/barebone_3ops.svg]
Tip

See Plotting on how to make diagrams like this.

Instantiating operations

There are several ways to instantiate an operation, each of which might be more suitable for different scenarios.

Decorator specification

If you are defining your computation graph and the functions that comprise it all in the same script, the decorator specification of operation instances might be particularly useful, as it allows you to assign computation graph structure to functions as they are defined. Here’s an example:

>>> from graphtik import operation, compose

>>> @operation(name='foo_op', needs=['a', 'b', 'c'], provides='foo')
... def foo(a, b, c):
... return c * (a + b)

>>> graphop = compose('foo_graph', foo)

Functional specification

If the functions underlying your computation graph operations are defined elsewhere than the script in which your graph itself is defined (e.g. they are defined in another module, or they are system functions), you can use the functional specification of operation instances:

>>> from operator import add, mul
>>> from graphtik import operation, compose

>>> add_op = operation(name='add_op', needs=['a', 'b'], provides='sum')(add)
>>> mul_op = operation(name='mul_op', needs=['c', 'sum'], provides='product')(mul)

>>> graphop = compose('add_mul_graph', add_op, mul_op)

The functional specification is also useful if you want to create multiple operation
instances from the same function, perhaps with different parameter values, e.g.:

>>> from functools import partial

>>> def mypow(a, p=2):
... return a ** p

>>> pow_op1 = operation(name='pow_op1', needs=['a'], provides='a_squared')(mypow)
>>> pow_op2 = operation(name='pow_op2', needs=['a'], provides='a_cubed')(partial(mypow, p=3))

>>> graphop = compose('two_pows_graph', pow_op1, pow_op2)

A slightly different approach can be used here to accomplish the same effect
by creating an operation “builder pattern”:

>>> def mypow(a, p=2):
... return a ** p

>>> pow_op_factory = operation(mypow, needs=['a'], provides='a_squared')

>>> pow_op1 = pow_op_factory(name='pow_op1')
>>> pow_op2 = pow_op_factory.withset(name='pow_op2', provides='a_cubed')(partial(mypow, p=3))
>>> pow_op3 = pow_op_factory(lambda a: 1, name='pow_op0')

>>> graphop = compose('two_pows_graph', pow_op1, pow_op2, pow_op3)
>>> graphop(a=2)
{'a': 2, 'a_cubed': 8, 'a_squared': 4}

Note

You cannot call again the factory to overwrite the function,
you have to use either the fn= keyword with withset() method or
call once more.

Modifiers on operation inputs and outputs

Certain modifiers are available to apply to input or output values in needs and provides,
for example, to designate optional inputs, or “ghost” sideffects inputs & outputs.
These modifiers are available in the graphtik.modifiers module:

Optionals

	
class graphtik.modifiers.optional[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/modifiers.py#L12]

	An optional need signifies that the function’s argument may not receive a value.

Only input values in needs may be designated as optional using this modifier.
An operation will receive a value for an optional need only if if it is available
in the graph at the time of its invocation.
The operation’s function should have a defaulted parameter with the same name
as the opetional, and the input value will be passed as a keyword argument,
if it is available.

Here is an example of an operation that uses an optional argument:

>>> from graphtik import operation, compose, optional

>>> def myadd(a, b, c=0):
... return a + b + c

Designate c as an optional argument:

>>> graph = compose('mygraph',
... operation(name='myadd', needs=['a', 'b', optional('c')], provides='sum')(myadd)
...)
>>> graph
NetworkOperation('mygraph',
 needs=['a', 'b', optional('c')],
 provides=['sum'],
 x1ops)

The graph works with and without c provided as input:

>>> graph(a=5, b=2, c=4)['sum']
11
>>> graph(a=5, b=2)
{'a': 5, 'b': 2, 'sum': 7}

Varargs

	
class graphtik.modifiers.vararg[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/modifiers.py#L56]

	Like optional but feeds as ONE OF the *args into the function (instead of **kwargs).

For instance:

>>> from graphtik import operation, compose, vararg

>>> def addall(a, *b):
... return a + sum(b)

Designate b & c as an vararg arguments:

>>> graph = compose('mygraph',
... operation(name='addall', needs=['a', vararg('b'), vararg('c')],
... provides='sum')(addall)
...)
>>> graph
NetworkOperation('mygraph',
 needs=['a', optional('b'), optional('c')],
 provides=['sum'],
 x1ops)

The graph works with and without any of b and c inputs:

>>> graph(a=5, b=2, c=4)['sum']
11
>>> graph(a=5, b=2)
{'a': 5, 'b': 2, 'sum': 7}
>>> graph(a=5)
{'a': 5, 'sum': 5}

	
class graphtik.modifiers.varargs[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/modifiers.py#L96]

	An optional like vararg feeds as MANY *args into the function (instead of **kwargs).

Read also the example test-case in: test/test_op.py:test_varargs()

Sideffects

	
class graphtik.modifiers.sideffect[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/modifiers.py#L107]

	A sideffect data-dependency participates in the graph but never given/asked in functions.

Both inputs & outputs in needs & provides may be designated as sideffects
using this modifier. Sideffects work as usual while solving the graph but
they do not interact with the operation’s function; specifically:

	input sideffects are NOT fed into the function;

	output sideffects are NOT expected from the function.

Their purpose is to describe operations that modify the internal state of
some of their arguments (“side-effects”).
A typical use case is to signify columns required to produce new ones in
pandas dataframes:

>>> from graphtik import operation, compose, sideffect

>>> # Function appending a new dataframe column from two pre-existing ones.
>>> def addcolumns(df):
... df['sum'] = df['a'] + df['b']

Designate a, b & sum column names as an sideffect arguments:

>>> graph = compose('mygraph',
... operation(
... name='addcolumns',
... needs=['df', sideffect('df.b')], # sideffect names can be anything
... provides=[sideffect('df.sum')])(addcolumns)
...)
>>> graph
NetworkOperation('mygraph', needs=['df', 'sideffect(df.b)'],
 provides=['sideffect(df.sum)'], x1ops)

>>> df = pd.DataFrame({'a': [5, 0], 'b': [2, 1]})
>>> graph({'df': df})['df']
 a b
0 5 2
1 0 1

We didn’t get the sum column because the b sideffect was unsatisfied.
We have to add its key to the inputs (with _any_ value):

>>> graph({'df': df, sideffect("df.b"): 0})['df']
 a b sum
0 5 2 7
1 0 1 1

Note that regular data in needs and provides do not match same-named sideffects.
That is, in the following operation, the prices input is different from
the sideffect(prices) output:

>>> def upd_prices(sales_df, prices):
... sales_df["Prices"] = prices

>>> operation(fn=upd_prices,
... name="upd_prices",
... needs=["sales_df", "price"],
... provides=[sideffect("price")])
operation(name='upd_prices', needs=['sales_df', 'price'],
 provides=['sideffect(price)'], fn='upd_prices')

Note

An operation with sideffects outputs only, have functions that return
no value at all (like the one above). Such operation would still be called for
their side-effects.

Tip

You may associate sideffects with other data to convey their relationships,
simply by including their names in the string - in the end, it’s just a string -
but no enforcement will happen from graphtik.

>>> sideffect("price[sales_df]")
'sideffect(price[sales_df])'

2. Graph Composition

Graphtik’s compose factory handles the work of tying together operation
instances into a runnable computation graph.

The compose factory

For now, here’s the specification of compose. We’ll get into how to use it in a second.

	
graphtik.compose(name, op1, *operations, needs: Union[Collection[T_co], str, None] = None, provides: Union[Collection[T_co], str, None] = None, merge=False, node_props=None, method=None, overwrites_collector=None) → graphtik.netop.NetworkOperation[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik.py#L263]

	Composes a collection of operations into a single computation graph,
obeying the merge property, if set in the constructor.

	Parameters

	
	name (str) – A optional name for the graph being composed by this object.

	op1 – syntactically force at least 1 operation

	operations – Each argument should be an operation instance created using
operation.

	merge (bool) – If True, this compose object will attempt to merge together
operation instances that represent entire computation graphs.
Specifically, if one of the operation instances passed to this
compose object is itself a graph operation created by an
earlier use of compose the sub-operations in that graph are
compared against other operations passed to this compose
instance (as well as the sub-operations of other graphs passed to
this compose instance). If any two operations are the same
(based on name), then that operation is computed only once, instead
of multiple times (one for each time the operation appears).

	node_props – added as-is into NetworkX graph, to provide for filtering
by NetworkOperation.narrowed().

	method – either parallel or None (default);
if "parallel", launches multi-threading.
Set when invoking a composed graph or by
set_execution_method().

	overwrites_collector – (optional) a mutable dict to be fillwed with named values.
If missing, values are simply discarded.

	Returns

	Returns a special type of operation class, which represents an
entire computation graph as a single operation.

	Raises

	ValueError – If the net` cannot produce the asked outputs from the given inputs.

Simple composition of operations

The simplest use case for compose is assembling a collection of individual operations
into a runnable computation graph.
The example script from Quick start illustrates this well:

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

>>> # Computes |a|^p.
>>> def abspow(a, p):
... c = abs(a) ** p
... return c

>>> # Compose the mul, sub, and abspow operations into a computation graph.
>>> graphop = compose("graphop",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
... operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed"])
... (partial(abspow, p=3))
...)

The call here to compose() yields a runnable computation graph that looks like this
(where the circles are operations, squares are data, and octagons are parameters):

[image: _images/barebone_3ops.svg]

Running a computation graph

The graph composed in the example above in Simple composition of operations can be run
by simply calling it with a dictionary argument whose keys correspond to the names of inputs
to the graph and whose values are the corresponding input values.
For example, if graph is as defined above, we can run it like this:

Run the graph and request all of the outputs.
>>> out = graphop(a=2, b=5)
>>> out
{'a': 2, 'b': 5, 'ab': 10, 'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

Producing a subset of outputs

By default, calling a graph-operation on a set of inputs will yield all of that graph’s outputs.
You can use the outputs parameter to request only a subset.
For example, if graphop is as above:

Run the graph-operation and request a subset of the outputs.
>>> out = graphop.compute({'a': 2, 'b': 5}, outputs="a_minus_ab")
>>> out
{'a_minus_ab': -8}

When using outputs to request only a subset of a graph’s outputs, Graphtik executes
only the operation nodes in the graph that are on a path from the inputs to the requested outputs.
For example, the abspow1 operation will not be executed here.

Short-circuiting a graph computation

You can short-circuit a graph computation, making certain inputs unnecessary, by providing a value in the graph that is further downstream in the graph than those inputs. For example, in the graph-operation we’ve been working with, you could provide the value of a_minus_ab to make the inputs a and b unnecessary:

Run the graph-operation and request a subset of the outputs.
>>> out = graphop(a_minus_ab=-8)
>>> out
{'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

When you do this, any operation nodes that are not on a path from the downstream input to the requested outputs (i.e. predecessors of the downstream input) are not computed. For example, the mul1 and sub1 operations are not executed here.

This can be useful if you have a graph-operation that accepts alternative forms of the same input. For example, if your graph-operation requires a PIL.Image as input, you could allow your graph to be run in an API server by adding an earlier operation that accepts as input a string of raw image data and converts that data into the needed PIL.Image. Then, you can either provide the raw image data string as input, or you can provide the PIL.Image if you have it and skip providing the image data string.

Adding on to an existing computation graph

Sometimes you will have an existing computation graph to which you want to add operations.
This is simple, since compose can compose whole graphs along with individual operation instances.
For example, if we have graph as above, we can add another operation to it to create a new graph:

>>> # Add another subtraction operation to the graph.
>>> bigger_graph = compose("bigger_graph",
... graphop,
... operation(name="sub2", needs=["a_minus_ab", "c"], provides="a_minus_ab_minus_c")(sub)
...)

>>> # Run the graph and print the output.
>>> sol = bigger_graph.compute({'a': 2, 'b': 5, 'c': 5}, outputs=["a_minus_ab_minus_c"])
>>> sol
{'a_minus_ab_minus_c': -13}

This yields a graph which looks like this (see Plotting):

>>> bigger_graph.plot('bigger_example_graph.svg', solution=sol)

[image: _images/bigger_example_graph.svg]

More complicated composition: merging computation graphs

Sometimes you will have two computation graphs—perhaps ones that share operations—you want to combine into one. In the simple case, where the graphs don’t share operations or where you don’t care whether a duplicated operation is run multiple (redundant) times, you can just do something like this:

combined_graph = compose("combined_graph", graph1, graph2)

However, if you want to combine graphs that share operations and don’t want to pay the price of running redundant computations, you can set the merge parameter of compose() to True. This will consolidate redundant operation nodes (based on name) into a single node. For example, let’s say we have graphop, as in the examples above, along with this graph:

>>> # This graph shares the "mul1" operation with graph.
>>> another_graph = compose("another_graph",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="mul2", needs=["c", "ab"], provides=["cab"])(mul)
...)

We can merge graphop and another_graph like so, avoiding a redundant mul1 operation:

>>> merged_graph = compose("merged_graph", graphop, another_graph, merge=True)
>>> print(merged_graph)
NetworkOperation('merged_graph',
 needs=['a', 'b', 'ab', 'a_minus_ab', 'c'],
 provides=['ab', 'a_minus_ab', 'abs_a_minus_ab_cubed', 'cab'],
 x4ops)

This merged_graph will look like this:

[image: _images/example_merged_graph.svg]As always, we can run computations with this graph by simply calling it:

>>> merged_graph.compute({'a': 2, 'b': 5, 'c': 5}, outputs=["cab"])
{'cab': 50}

3. Plotting and Debugging

Plotting

For Errors & debugging it is necessary to visualize the graph-operation.
You may plot the original plot and annotate on top the execution plan and
solution of the last computation, calling methods with arguments like this:

netop.plot(show=True) # open a matplotlib window
netop.plot("netop.svg") # other supported formats: png, jpg, pdf, ...
netop.plot() # without arguments return a pydot.DOT object
netop.plot(solution=out) # annotate graph with solution values

[image: execution plan]
[image: Graphtik Legend]The legend for all graphtik diagrams, generated by legend().

The same Plotter.plot() method applies for NetworkOperation,
Network & ExecutionPlan, each one capable to produce diagrams
with increasing complexity. Whenever possible, the top-level plot() methods
delegates to the ones below.

For instance, when a net-operation has just been composed, plotting it will
come out bare bone, with just the 2 types of nodes (data & operations), their
dependencies, and the sequence of the execution-plan.

[image: barebone graph]But as soon as you run it, the net plot calls will print more of the internals.
Internally it delegates to ExecutionPlan.plot() of NetworkOperation.last_plan
attribute, which caches the last run to facilitate debugging.
If you want the bare-bone diagram, plot network:

netop.net.plot(...)

Note

For plots, Graphviz [https://graphviz.org] program must be in your PATH,
and pydot & matplotlib python packages installed.
You may install both when installing graphtik with its plot extras:

pip install graphtik[plot]

Tip

The pydot.Dot [https://pypi.org/project/pydot/] instances returned by
Plotter.plot() are rendered directly in Jupyter/IPython notebooks
as SVG images.

You may increase the height of the SVG cell output with something like this:

netop.plot(jupyter_render={"svg_element_styles": "height: 600px; width: 100%"})

Check default_jupyter_render for defaults.

Errors & debugging

Graphs may become arbitrary deep. Launching a debugger-session to inspect
deeply nested stacks is notoriously hard

As a workaround, when some operation fails, the original exception gets annotated
with the folllowing properties, as a debug aid:

>>> from graphtik import compose, operation
>>> from pprint import pprint

>>> def scream(*args):
... raise ValueError("Wrong!")

>>> try:
... compose("errgraph",
... operation(name="screamer", needs=['a'], provides=["foo"])(scream)
...)(a=None)
... except ValueError as ex:
... pprint(ex.jetsam)
{'args': {'args': [None], 'kwargs': {}},
 'executed': set(),
 'network': Network(
 +--a
 +--FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn='scream')
 +--foo),
 'operation': FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn='scream'),
 'outputs': None,
 'plan': ExecutionPlan(needs=['a'], provides=['foo'], steps:
 +--FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn='scream')),
 'provides': None,
 'results_fn': None,
 'results_op': None,
 'solution': {'a': None}}

In interactive REPL console you may use this to get the last raised exception:

import sys

sys.last_value.jetsam

The following annotated attributes might have meaningfull value on an exception:

	network

	the innermost network owning the failed operation/function

	plan

	the innermost plan that executing when a operation crashed

	operation

	the innermost operation that failed

	args

	either the input arguments list fed into the function, or a dict with
both args & kwargs keys in it.

	outputs

	the names of the outputs the function was expected to return

	provides

	the names eventually the graph needed from the operation;
a subset of the above, and not always what has been declared in the operation.

	fn_results

	the raw results of the operation’s fuction, if any

	op_results

	the results, always a dictionary, as matched with operation’s provides

	executed`

	a set with the operation nodes & instructions executed till the error happened.

Ofcourse you may use many of the above “jetsam” values when plotting.

Note

The Plotting capabilities, along with the above annotation of exceptions
with the internal state of plan/operation often renders a debugger session
unnecessary. But since the state of the annotated values might be incomple,
you may not always avoid one.

Execution internals

Network-based computation of operations & data.

The execution of network operations is splitted in 2 phases:

	COMPILE:

	prune unsatisfied nodes, sort dag topologically & solve it, and
derive the execution steps (see below) based on the given inputs
and asked outputs.

	EXECUTE:

	sequential or parallel invocation of the underlying functions
of the operations with arguments from the solution.

Computations are based on 5 data-structures:

	Network.graph

	A networkx graph (yet a DAG) containing interchanging layers of
Operation and _DataNode nodes.
They are layed out and connected by repeated calls of
add_OP().

The computation starts with _prune_graph() extracting
a DAG subgraph by pruning its nodes based on given inputs and
requested outputs in compute().

	ExecutionPlan.dag

	An directed-acyclic-graph containing the pruned nodes as build by
_prune_graph(). This pruned subgraph is used to decide
the ExecutionPlan.steps (below).
The containing ExecutionPlan.steps instance is cached
in _cached_plans across runs with inputs/outputs as key.

	ExecutionPlan.steps

	It is the list of the operation-nodes only
from the dag (above), topologically sorted, and interspersed with
instruction steps needed to complete the run.
It is built by _build_execution_steps() based on
the subgraph dag extracted above.
The containing ExecutionPlan.steps instance is cached
in _cached_plans across runs with inputs/outputs as key.

The instructions items achieve the following:

	
	_EvictInstruction: evicts items from solution as soon as

	they are not needed further down the dag, to reduce memory footprint
while computing.

	
	_PinInstruction: avoid overwritting any given intermediate

	inputs, and still allow their providing operations to run
(because they are needed for their other outputs).

	var solution

	a local-var in compute(), initialized on each run
to hold the values of the given inputs, generated (intermediate) data,
and output values.
It is returned as is if no specific outputs requested; no data-eviction
happens then.

	arg overwrites

	The optional argument given to compute() to colect the
intermediate calculated values that are overwritten by intermediate
(aka “pinned”) input-values.

4. API Reference

Package: graphtik

Lightweight computation graphs for Python.

Module: base

Mostly utilities

	
class graphtik.base.Plotter[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/base.py#L152]

	Classes wishing to plot their graphs should inherit this and …

implement property plot to return a “partial” callable that somehow
ends up calling plot.render_pydot() with the graph or any other
args binded appropriately.
The purpose is to avoid copying this function & documentation here around.

	
plot(filename=None, show=False, jupyter_render: Union[None, Mapping[KT, VT_co], str] = None, **kws)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/base.py#L162]

	Entry-point for plotting ready made operation graphs.

	Parameters

	
	filename (str) – Write diagram into a file.
Common extensions are .png .dot .jpg .jpeg .pdf .svg
call plot.supported_plot_formats() for more.

	show – If it evaluates to true, opens the diagram in a matplotlib window.
If it equals -1, it plots but does not open the Window.

	inputs – an optional name list, any nodes in there are plotted
as a “house”

	outputs – an optional name list, any nodes in there are plotted
as an “inverted-house”

	solution – an optional dict with values to annotate nodes, drawn “filled”
(currently content not shown, but node drawn as “filled”)

	executed – an optional container with operations executed, drawn “filled”

	title – an optional string to display at the bottom of the graph

	node_props – an optional nested dict of Grapvhiz attributes for certain nodes

	edge_props – an optional nested dict of Grapvhiz attributes for certain edges

	clusters – an optional mapping of nodes –> cluster-names, to group them

	jupyter_render – a nested dictionary controlling the rendering of graph-plots in Jupyter cells,
if None, defaults to jupyter_render (you may modify it in place
and apply for all future calls).

	Returns

	a pydot.Dot [https://pypi.org/project/pydot/] instance
(for for API reference visit:
https://pydotplus.readthedocs.io/reference.html#pydotplus.graphviz.Dot)

Tip

The pydot.Dot instance returned is rendered directly
in Jupyter/IPython notebooks as SVG images.

You may increase the height of the SVG cell output with
something like this:

netop.plot(svg_element_styles="height: 600px; width: 100%")

Check default_jupyter_render for defaults.

Note that the graph argument is absent - Each Plotter provides
its own graph internally; use directly render_pydot() to provide
a different graph.

[image: Graphtik Legend]NODES:

	oval

	function

	egg

	subgraph operation

	house

	given input

	inversed-house

	asked output

	polygon

	given both as input & asked as output (what?)

	square

	intermediate data, neither given nor asked.

	red frame

	evict-instruction, to free up memory.

	blue frame

	pinned-instruction, not to overwrite intermediate inputs.

	filled

	data node has a value in solution OR function has been executed.

	thick frame

	function/data node in execution steps.

ARROWS

	solid black arrows

	dependencies (source-data need-ed by target-operations,
sources-operations provides target-data)

	dashed black arrows

	optional needs

	blue arrows

	sideffect needs/provides

	wheat arrows

	broken dependency (provide) during pruning

	green-dotted arrows

	execution steps labeled in succession

To generate the legend, see legend().

Sample code:

>>> from graphtik import compose, operation
>>> from graphtik.modifiers import optional
>>> from operator import add

>>> netop = compose("netop",
... operation(name="add", needs=["a", "b1"], provides=["ab1"])(add),
... operation(name="sub", needs=["a", optional("b2")], provides=["ab2"])(lambda a, b=1: a-b),
... operation(name="abb", needs=["ab1", "ab2"], provides=["asked"])(add),
...)

>>> netop.plot(show=True); # plot just the graph in a matplotlib window # doctest: +SKIP
>>> inputs = {'a': 1, 'b1': 2}
>>> solution = netop(**inputs) # now plots will include the execution-plan

>>> netop.plot('plot1.svg', inputs=inputs, outputs=['asked', 'b1'], solution=solution); # doctest: +SKIP
>>> dot = netop.plot(solution=solution); # just get the `pydoit.Dot` object, renderable in Jupyter
>>> print(dot)
digraph G {
 fontname=italic;
 label=netop;
 a [fillcolor=wheat, shape=invhouse, style=filled, tooltip=1];
...

	
graphtik.base.aslist(i, argname, allowed_types=<class 'list'>)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/base.py#L14]

	Utility to accept singular strings as lists, and None –> [].

	
graphtik.base.astuple(i, argname, allowed_types=<class 'tuple'>)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/base.py#L30]

	

	
graphtik.base.jetsam(ex, locs, *salvage_vars, annotation='jetsam', **salvage_mappings)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/base.py#L47]

	Annotate exception with salvaged values from locals() and raise!

	Parameters

	
	ex – the exception to annotate

	locs – locals() from the context-manager’s block containing vars
to be salvaged in case of exception

ATTENTION: wrapped function must finally call locals(), because
locals dictionary only reflects local-var changes after call.

	annotation – the name of the attribute to attach on the exception

	salvage_vars – local variable names to save as is in the salvaged annotations dictionary.

	salvage_mappings – a mapping of destination-annotation-keys –> source-locals-keys;
if a source is callable, the value to salvage is retrieved
by calling value(locs).
They take precendance over`salvae_vars`.

	Raises

	any exception raised by the wrapped function, annotated with values
assigned as atrributes on this context-manager

	Any attrributes attached on this manager are attached as a new dict on
the raised exception as new jetsam attrribute with a dict as value.

	If the exception is already annotated, any new items are inserted,
but existing ones are preserved.

Example:

Call it with managed-block’s locals() and tell which of them to salvage
in case of errors:

try:
 a = 1
 b = 2
 raise Exception()
exception Exception as ex:
 jetsam(ex, locals(), "a", b="salvaged_b", c_var="c")

And then from a REPL:

import sys
sys.last_value.jetsam
{'a': 1, 'salvaged_b': 2, "c_var": None}

** Reason:**

Graphs may become arbitrary deep. Debugging such graphs is notoriously hard.

The purpose is not to require a debugger-session to inspect the root-causes
(without precluding one).

Naively salvaging values with a simple try/except block around each function,
blocks the debugger from landing on the real cause of the error - it would
land on that block; and that could be many nested levels above it.

Module: op

About operation nodes (but not net-ops to break cycle).

	
class graphtik.op.FunctionalOperation[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L64]

	An Operation performing a callable (ie function, method, lambda).

Use operation() factory to build instances of this class instead.

	
compute(named_inputs, outputs=None) → dict[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L200]

	Compute (optional) asked outputs for the given named_inputs.

It is called by Network.
End-users should simply call the operation with named_inputs as kwargs.

	Parameters

	named_inputs (list) – the input values with which to feed the computation.

	Returns list

	Should return a list values representing
the results of running the feed-forward computation on
inputs.

	
withset(**kw) → graphtik.op.FunctionalOperation[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L147]

	Make a clone with the some values replaced.

Attention

Using namedtuple._replace() would not pass through cstor,
so would not get a nested name with parents, not arguments validation.

	
class graphtik.op.Operation[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L44]

	An abstract class representing an action with compute().

	
compute(named_inputs, outputs=None)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L47]

	Compute (optional) asked outputs for the given named_inputs.

It is called by Network.
End-users should simply call the operation with named_inputs as kwargs.

	Parameters

	named_inputs (list) – the input values with which to feed the computation.

	Returns list

	Should return a list values representing
the results of running the feed-forward computation on
inputs.

	
class graphtik.op.operation(fn: Callable = None, *, name=None, needs: Union[Collection[T_co], str, None] = None, provides: Union[Collection[T_co], str, None] = None, returns_dict=None, node_props: Mapping[KT, VT_co] = None)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L275]

	A builder for graph-operations wrapping functions.

	Parameters

	
	fn (function) – The function used by this operation. This does not need to be
specified when the operation object is instantiated and can instead
be set via __call__ later.

	name (str) – The name of the operation in the computation graph.

	needs (list) – Names of input data objects this operation requires. These should
correspond to the args of fn.

	provides (list) – Names of output data objects this operation provides.
If more than one given, those must be returned in an iterable,
unless returns_dict is true, in which cae a dictionary with as many
elements must be returned

	returns_dict (bool) – if true, it means the fn returns a dictionary with all provides,
and no further processing is done on them
(i.e. the returned output-values are not zipped with provides)

	node_props – added as-is into NetworkX graph

	Returns

	when called, it returns a FunctionalOperation

Example:

This is an example of its use, based on the “builder pattern”:

>>> from graphtik import operation

>>> opb = operation(name='add_op')
>>> opb.withset(needs=['a', 'b'])
operation(name='add_op', needs=['a', 'b'], provides=[], fn=None)
>>> opb.withset(provides='SUM', fn=sum)
operation(name='add_op', needs=['a', 'b'], provides=['SUM'], fn='sum')

You may keep calling withset() till you invoke a final __call__()
on the builder; then you get the actual FunctionalOperation instance:

>>> # Create `Operation` and overwrite function at the last moment.
>>> opb(sum)
FunctionalOperation(name='add_op', needs=['a', 'b'], provides=['SUM'], fn='sum')

	
withset(*, fn: Callable = None, name=None, needs: Union[Collection[T_co], str, None] = None, provides: Union[Collection[T_co], str, None] = None, returns_dict=None, node_props: Mapping[KT, VT_co] = None) → graphtik.op.operation[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L340]

	

	
graphtik.op.reparse_operation_data(name, needs, provides)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/op.py#L19]

	Validate & reparse operation data as lists.

As a separate function to be reused by client code
when building operations and detect errors aearly.

Module: netop

About network-operations (those based on graphs)

	
class graphtik.netop.NetworkOperation(net, name, *, inputs=None, outputs=None, predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = None, method=None, overwrites_collector=None)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/netop.py#L21]

	An Operation performing a network-graph of other operations.

Tip

Use compose() factory to prepare the net and build
instances of this class.

	
compute(named_inputs, outputs=None) → dict[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/netop.py#L169]

	Solve & execute the graph, sequentially or parallel.

It see also Operation.compute().

	Parameters

	
	named_inputs (dict) – A maping of names –> values that must contain at least
the compulsory inputs that were specified when the plan was built
(but cannot enforce that!).
Cloned, not modified.

	outputs – a string or a list of strings with all data asked to compute.
If you set this variable to None, all data nodes will be kept
and returned at runtime.

	Returns

	a dictionary of output data objects, keyed by name.

	Raises

	ValueError –
	If outputs asked do not exist in network, with msg:

Unknown output nodes: …

	If plan does not contain any operations, with msg:

Unsolvable graph: …

	If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs…

	If outputs asked cannot be produced by the dag, with msg:

Impossible outputs…

	
inputs = None[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/netop.py]

	The inputs names (possibly None) used to compile the plan.

	
last_plan = None[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/netop.py]

	The execution_plan of the last call to compute(), stored as debugging aid.

	
method = None[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/netop.py]

	set execution mode to single-threaded sequential by default

	
narrowed(inputs: Union[Collection[T_co], str, None] = None, outputs: Union[Collection[T_co], str, None] = None, name=None, predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = None) → graphtik.netop.NetworkOperation[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/netop.py#L99]

	Return a copy with a network pruned for the given needs & provides.

	Parameters

	
	inputs – prune net against these possbile inputs for compute();
method will WARN for any irrelevant inputs given.
If None, they are collected from the net.
They become the needs of the returned netop.

	outputs – prune net against these possible outputs for compute();
method will RAISE if any irrelevant outputs asked.
If None, they are collected from the net.
They become the provides of the returned netop.

	name – the name for the new netop:

	if None, the same name is kept;

	if True, a distinct name is devised:

<old-name>-<uid>

	otherwise, the given name is applied.

	predicate – a 2-argument callable(op, node-data) that should return true for nodes to include

	Returns

	A narrowed netop clone, which MIGHT be empty!*

	Raises

	ValueError –
	If outputs asked do not exist in network, with msg:

Unknown output nodes: …

	
outputs = None[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/netop.py]

	The outputs names (possibly None) used to compile the plan.

	
overwrites_collector = None[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/netop.py]

	

	
set_execution_method(method)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/netop.py#L229]

	Determine how the network will be executed.

	Parameters

	method (str) – If “parallel”, execute graph operations concurrently
using a threadpool.

	
set_overwrites_collector(collector)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/netop.py#L244]

	Asks to put all overwrites into the collector after computing

An “overwrites” is intermediate value calculated but NOT stored
into the results, becaues it has been given also as an intemediate
input value, and the operation that would overwrite it MUST run for
its other results.

	Parameters

	collector – a mutable dict to be fillwed with named values

	
graphtik.netop.compose(name, op1, *operations, needs: Union[Collection[T_co], str, None] = None, provides: Union[Collection[T_co], str, None] = None, merge=False, node_props=None, method=None, overwrites_collector=None) → graphtik.netop.NetworkOperation[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/netop.py#L263]

	Composes a collection of operations into a single computation graph,
obeying the merge property, if set in the constructor.

	Parameters

	
	name (str) – A optional name for the graph being composed by this object.

	op1 – syntactically force at least 1 operation

	operations – Each argument should be an operation instance created using
operation.

	merge (bool) – If True, this compose object will attempt to merge together
operation instances that represent entire computation graphs.
Specifically, if one of the operation instances passed to this
compose object is itself a graph operation created by an
earlier use of compose the sub-operations in that graph are
compared against other operations passed to this compose
instance (as well as the sub-operations of other graphs passed to
this compose instance). If any two operations are the same
(based on name), then that operation is computed only once, instead
of multiple times (one for each time the operation appears).

	node_props – added as-is into NetworkX graph, to provide for filtering
by NetworkOperation.narrowed().

	method – either parallel or None (default);
if "parallel", launches multi-threading.
Set when invoking a composed graph or by
set_execution_method().

	overwrites_collector – (optional) a mutable dict to be fillwed with named values.
If missing, values are simply discarded.

	Returns

	Returns a special type of operation class, which represents an
entire computation graph as a single operation.

	Raises

	ValueError – If the net` cannot produce the asked outputs from the given inputs.

Module: network

Network-based computation of operations & data.

The execution of network operations is splitted in 2 phases:

	COMPILE:

	prune unsatisfied nodes, sort dag topologically & solve it, and
derive the execution steps (see below) based on the given inputs
and asked outputs.

	EXECUTE:

	sequential or parallel invocation of the underlying functions
of the operations with arguments from the solution.

Computations are based on 5 data-structures:

	Network.graph

	A networkx graph (yet a DAG) containing interchanging layers of
Operation and _DataNode nodes.
They are layed out and connected by repeated calls of
add_OP().

The computation starts with _prune_graph() extracting
a DAG subgraph by pruning its nodes based on given inputs and
requested outputs in compute().

	ExecutionPlan.dag

	An directed-acyclic-graph containing the pruned nodes as build by
_prune_graph(). This pruned subgraph is used to decide
the ExecutionPlan.steps (below).
The containing ExecutionPlan.steps instance is cached
in _cached_plans across runs with inputs/outputs as key.

	ExecutionPlan.steps

	It is the list of the operation-nodes only
from the dag (above), topologically sorted, and interspersed with
instruction steps needed to complete the run.
It is built by _build_execution_steps() based on
the subgraph dag extracted above.
The containing ExecutionPlan.steps instance is cached
in _cached_plans across runs with inputs/outputs as key.

The instructions items achieve the following:

	
	_EvictInstruction: evicts items from solution as soon as

	they are not needed further down the dag, to reduce memory footprint
while computing.

	
	_PinInstruction: avoid overwritting any given intermediate

	inputs, and still allow their providing operations to run
(because they are needed for their other outputs).

	var solution

	a local-var in compute(), initialized on each run
to hold the values of the given inputs, generated (intermediate) data,
and output values.
It is returned as is if no specific outputs requested; no data-eviction
happens then.

	arg overwrites

	The optional argument given to compute() to colect the
intermediate calculated values that are overwritten by intermediate
(aka “pinned”) input-values.

	
exception graphtik.network.AbortedException[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L104]

	Raised from the Network code when abort_run() is called.

	
graphtik.network._execution_configs = <ContextVar name='execution_configs' default={'execution_pool': <multiprocessing.pool.ThreadPool object>, 'abort': False, 'skip_evictions': False}>[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py]

	Global configurations for all (nested) networks in a computaion run.

	
class graphtik.network.Network(*operations, graph=None)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L513]

	Assemble operations & data into a directed-acyclic-graph (DAG) to run them.

	Variables

	
	needs – the “base”, all data-nodes that are not produced by some operation

	provides – the “base”, all data-nodes produced by some operation

	
_abc_impl = <_abc_data object>[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py]

	

	
_append_operation(graph, operation: graphtik.op.Operation)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L570]

	Adds the given operation and its data requirements to the network graph.

	Invoked during constructor only (immutability).

	Identities are based on the name of the operation, the names of the operation’s needs,
and the names of the data it provides.

	Parameters

	
	graph – the networkx graph to append to

	operation – operation instance to append

	
_apply_graph_predicate(graph, predicate)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L659]

	

	
_build_execution_steps(pruned_dag, inputs: Collection[T_co], outputs: Optional[Collection[T_co]]) → List[T][source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L821]

	Create the list of operation-nodes & instructions evaluating all

operations & instructions needed a) to free memory and b) avoid
overwritting given intermediate inputs.

	Parameters

	
	pruned_dag – The original dag, pruned; not broken.

	outputs – outp-names to decide whether to add (and which) evict-instructions

Instances of _EvictInstructions are inserted in steps between
operation nodes to reduce the memory footprint of solutions while
the computation is running.
An evict-instruction is inserted whenever a need is not used
by any other operation further down the DAG.

	
_build_pydot(**kws)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L563]

	

	
_cached_plans = None[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py]

	Speed up compile() call and avoid a multithreading issue(?)
that is occuring when accessing the dag in networkx.

	
_prune_graph(inputs: Union[Collection[T_co], str, None], outputs: Union[Collection[T_co], str, None], predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = None) → Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7f64ee566128>, Collection[T_co], Collection[T_co], Collection[T_co]][source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L671]

	Determines what graph steps need to run to get to the requested
outputs from the provided inputs:
- Eliminate steps that are not on a path arriving to requested outputs;
- Eliminate unsatisfied operations: partial inputs or no outputs needed;
- consolidate the list of needs & provides.

	Parameters

	
	inputs – The names of all given inputs.

	outputs – The desired output names. This can also be None, in which
case the necessary steps are all graph nodes that are reachable
from the provided inputs.

	predicate – a 2-argument callable(op, node-data) that should return true for nodes to include

	Returns

	a 4-tuple with the pruned_dag, the out-edges of the inputs,
and needs/provides resolved based on given inputs/outputs
(which might be a subset of all needs/outputs of the returned graph).

Use the returned needs/provides to build a new plan.

	Raises

	ValueError –
	if outputs asked do not exist in network, with msg:

Unknown output nodes: …

	
_unsatisfied_operations(dag, inputs: Collection[T_co])[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L603]

	Traverse topologically sorted dag to collect un-satisfied operations.

Unsatisfied operations are those suffering from ANY of the following:

	They are missing at least one compulsory need-input.
Since the dag is ordered, as soon as we’re on an operation,
all its needs have been accounted, so we can get its satisfaction.

	Their provided outputs are not linked to any data in the dag.
An operation might not have any output link when _prune_graph()
has broken them, due to given intermediate inputs.

	Parameters

	
	dag – a graph with broken edges those arriving to existing inputs

	inputs – an iterable of the names of the input values

	Returns

	a list of unsatisfied operations to prune

	
compile(inputs: Union[Collection[T_co], str, None] = None, outputs: Union[Collection[T_co], str, None] = None) → graphtik.network.ExecutionPlan[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L925]

	Create or get from cache an execution-plan for the given inputs/outputs.

See _prune_graph() and _build_execution_steps()
for detailed description.

	Parameters

	
	inputs – A collection with the names of all the given inputs.
If None`, all inputs that lead to given outputs are assumed.
If string, it is converted to a single-element collection.

	outputs – A collection or the name of the output name(s).
If None`, all reachable nodes from the given inputs are assumed.
If string, it is converted to a single-element collection.

	Returns

	the cached or fresh new execution-plan

	Raises

	ValueError –
	If outputs asked do not exist in network, with msg:

Unknown output nodes: …

	If solution does not contain any operations, with msg:

Unsolvable graph: …

	If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs…

	If outputs asked cannot be produced by the dag, with msg:

Impossible outputs…

	
narrowed(inputs: Union[Collection[T_co], str, None] = None, outputs: Union[Collection[T_co], str, None] = None, predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = None) → graphtik.network.Network[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L789]

	Return a pruned network supporting just the given inputs & outputs.

	Parameters

	
	inputs – all possible inputs names

	outputs – all possible output names

	predicate – a 2-argument callable(op, node-data) that should return true for nodes to include

	Returns

	the pruned clone, or this, if both inputs & outputs were None

	
class graphtik.network.ExecutionPlan[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L211]

	The result of the network’s compilation phase.

Note the execution plan’s attributes are on purpose immutable tuples.

	Variables

	
	net – The parent Network

	needs – An iset with the input names needed to exist in order to produce all provides.

	provides – An iset with the outputs names produces when all inputs are given.

	dag – The regular (not broken) pruned subgraph of net-graph.

	broken_edges – Tuple of broken incoming edges to given data.

	steps – The tuple of operation-nodes & instructions needed to evaluate
the given inputs & asked outputs, free memory and avoid overwritting
any given intermediate inputs.

	evict – when false, keep all inputs & outputs, and skip prefect-evictions check.

	
_abc_impl = <_abc_data object>[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py]

	

	
_build_pydot(**kws)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L241]

	

	
_call_operation(op, solution)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L320]

	

	
_check_if_aborted(executed)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L314]

	

	
_execute_sequential_method(solution, overwrites, executed)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L405]

	This method runs the graph one operation at a time in a single thread

	Parameters

	solution – must contain the input values only, gets modified

	
_execute_thread_pool_barrier_method(solution, overwrites, executed)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L328]

	This method runs the graph using a parallel pool of thread executors.
You may achieve lower total latency if your graph is sufficiently
sub divided into operations using this method.

	Parameters

	solution – must contain the input values only, gets modified

	
_pin_data_in_solution(value_name, solution, inputs, overwrites)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L308]

	

	
broken_dag[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py]

	

	
execute(named_inputs, outputs=None, *, overwrites=None, method=None)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L451]

	
	Parameters

	
	named_inputs – A maping of names –> values that must contain at least
the compulsory inputs that were specified when the plan was built
(but cannot enforce that!).
Cloned, not modified.

	outputs – If not None, they are just checked if possible, based on provides,
and scream if not.

	overwrites – (optional) a mutable dict to collect calculated-but-discarded values
because they were “pinned” by input vaules.
If missing, the overwrites values are simply discarded.

	Raises

	ValueError –
	If plan does not contain any operations, with msg:

Unsolvable graph: …

	If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs…

	If outputs asked cannot be produced by the dag, with msg:

Impossible outputs…

	
validate(inputs: Union[Collection[T_co], str, None], outputs: Union[Collection[T_co], str, None])[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/network.py#L267]

	Scream on invalid inputs, outputs or no operations in graph.

	Raises

	ValueError –
	If cannot produce any outputs from the given inputs, with msg:

Unsolvable graph: …

	If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs…

	If outputs asked cannot be produced by the dag, with msg:

Impossible outputs…

Module: plot

Plotting graphtik graps

	
graphtik.plot.build_pydot(graph, steps=None, inputs=None, outputs=None, solution=None, executed=None, title=None, node_props=None, edge_props=None, clusters=None) → <sphinx.ext.autodoc.importer._MockObject object at 0x7f64ec05b240>[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/plot.py#L138]

	Build a Graphviz out of a Network graph/steps/inputs/outputs and return it.

See Plotter.plot() for the arguments, sample code, and
the legend of the plots.

	
graphtik.plot.default_jupyter_render = {'svg_container_styles': '', 'svg_element_styles': 'width: 100%; height: 300px;', 'svg_pan_zoom_json': '{controlIconsEnabled: true, zoomScaleSensitivity: 0.4, fit: true}'}[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/plot.py]

	A nested dictionary controlling the rendering of graph-plots in Jupyter cells,

as those returned from Plotter.plot() (currently as SVGs).
Either modify it in place, or pass another one in the respective methods.

The following keys are supported.

	Parameters

	
	svg_pan_zoom_json – arguments controlling the rendering of a zoomable SVG in
Jupyter notebooks, as defined in https://github.com/ariutta/svg-pan-zoom#how-to-use
if None, defaults to string (also maps supported):

"{controlIconsEnabled: true, zoomScaleSensitivity: 0.4, fit: true}"

	svg_element_styles – mostly for sizing the zoomable SVG in Jupyter notebooks.
Inspect & experiment on the html page of the notebook with browser tools.
if None, defaults to string (also maps supported):

"width: 100%; height: 300px;"

	svg_container_styles – like svg_element_styles, if None, defaults to empty string (also maps supported).

	
graphtik.plot.legend(filename=None, show=None, jupyter_render: Mapping[KT, VT_co] = None)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/plot.py#L362]

	Generate a legend for all plots (see Plotter.plot() for args)

	
graphtik.plot.render_pydot(dot: <sphinx.ext.autodoc.importer._MockObject object at 0x7f64ec05b0f0>, filename=None, show=False, jupyter_render: str = None)[source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/plot.py#L305]

	Plot a Graphviz dot in a matplotlib, in file or return it for Jupyter.

	Parameters

	
	dot – the pre-built Graphviz pydot.Dot instance

	filename (str) – Write diagram into a file.
Common extensions are .png .dot .jpg .jpeg .pdf .svg
call plot.supported_plot_formats() for more.

	show – If it evaluates to true, opens the diagram in a matplotlib window.
If it equals -1, it returns the image but does not open the Window.

	jupyter_render – a nested dictionary controlling the rendering of graph-plots in Jupyter cells.
If None, defaults to default_jupyter_render
(you may modify those in place and they will apply for all future calls).

	Returns

	the matplotlib image if show=-1, or the dot.

See Plotter.plot() for sample code.

	
graphtik.plot.supported_plot_formats() → List[str][source] [https://github.com/pygraphkit/graphtik/blob/f2bf74f852d8142b11e25841521e1b2c7c2110c3/graphtik/plot.py#L300]

	return automatically all pydot extensions

5. Graphtik Changelog

TODO

See #1 [https://github.com/pygraphkit/graphtik/issues/1].

v4.0.0 (11 Dec 2019, @ankostis): NESTED merge, revert v3.x Unvarying, immutable OPs, “color” nodes

	BREAK/ENH(NETOP): MERGE NESTED NetOps by collecting all their operations
in a single Network; now children netops are not pruned in case
some of their needs are unsatisfied.

	feat(op): support multiple nesting under other netops.

	BREAK(NETOP): REVERT Unvarying NetOps+base-plan, and narrow Networks instead;
netops were too rigid, code was cumbersome, and could not really pinpoint
the narrowed needs always correctly (e.g. when they were also provides).

	A netop always narrows its net based on given inputs/outputs.
This means that the net might be a subset of the one constructed out of
the given operations. If you want all nodes, don’t specify needs/provides.

	drop 3 ExecutionPlan attributes: plan, needs, plan

	drop recompile flag in Network.compute().

	feat(net): new method Network.narrowed() clones and narrows.

	Network() cstor accepts a (cloned) graph to support narrowed() methods.

	BREAK/REFACT(OP): simplify hierarchy, make Operation fully abstract,
without name or requirements.

	enh: make FunctionalOperation IMMUTABLE, by inheriting
from class:.namedtuple.

	refact(net): consider as netop needs also intermediate data nodes.

	FEAT(#1 [https://github.com/pygraphkit/graphtik/issues/1], net, netop): support prunning based on arbitrary operation attributes
(e.g. assign “colors” to nodes and solve a subset each time).

	enh(netop): repr() now counts number of contained operations.

	refact(netop): rename netop.narrow() --> narrowed()

	drop(netop): don’t topologically-sort sub-networks before merging them;
might change some results, but gives controll back to the user to define nets.

v3.1.0 (6 Dec 2019, @ankostis): cooler prune()

	break/refact(NET): scream on plan.execute() (not net.prune())
so as calmly solve needs vs provides, based on the given inputs/outputs.

	FIX(ot): was failing when plotting graphs with ops without fn set.

	enh(net): minor fixes on assertions.

v3.0.0 (2 Dec 2019, @ankostis): UNVARYING NetOperations, narrowed, API refact

	NetworkOperations:

	BREAK(NET): RAISE if the graph is UNSOLVABLE for the given needs & provides!
(see “raises” list of compute()).

	BREAK: NetworkOperation.__call__() accepts solution as keyword-args,
to mimic API of Operation.__call__(). outputs keyword has been dropped.

Tip

Use NetworkOperation.compute() when you ask different outputs,
or set the recompile flag if just different inputs are given.

Read the next change-items for the new behavior of the compute() method.

	UNVARYING NetOperations:

	BREAK: calling method NetworkOperation.compute() with a single argument
is now UNVARYING, meaning that all needs are demaned, and hence,
all provides are produced, unless the recompile flag is true or outputs asked.

	BREAK: net-operations behave like regular operations when nested inside another netop,
and always produce all their provides, or scream if less inputs than needs
are given.

	ENH: a newly created or cloned netop can be narrowed()
to specific needs & provides, so as not needing to pass outputs on every call
to compute().

	feat: implemented based on the new “narrowed” NetworkOperation.plan attribute.

	FIX: netop needs are not all optional by default; optionality applied
only if all underlying operations have a certain need as optional.

	FEAT: support function **args with 2 new modifiers vararg & varargs,
acting like optional (but without feeding into underlying functions
like keywords).

	BREAK(yahoo#12 [https://github.com/yahoo/graphkit/issues/12]): simplify compose API by turning it from class –> function;
all args and operations are now given in a single compose() call.

	REFACT(net, netop): make Network IMMUTABLE by appending all operations together,
in NetworkOperation constructor.

	ENH(net): public-size _prune_graph() –> Network.prune()`()
which can be used to interogate needs & provides for a given graph.
It accepts None inputs & outputs to auto-derrive them.

	FIX(SITE): autodocs API chapter were not generated in at all,
due to import errors, fixed by using autodoc_mock_imports [http://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html#confval-autodoc_mock_imports]
on networkx, pydot & boltons libs.

	enh(op): polite error-,msg when calling an operation with missing needs
(instead of an abrupt KeyError).

	FEAT(CI): test also on Python-3.8

v2.3.0 (24 Nov 2019, @ankostis): Zoomable SVGs & more op jobs

	FEAT(plot): render Zoomable SVGs in jupyter(lab) notebooks.

	break(netop): rename execution-method "sequential" --> None.

	break(netop): move overwrites_collector & method args
from netop.__call__() –> cstor

	refact(netop): convert remaining **kwargs into named args, tighten up API.

v2.2.0 (20 Nov 2019, @ankostis): enhance OPERATIONS & restruct their modules

	REFACT(src): split module nodes.py –> op.py + netop.py and
move Operation from base.py –> op.py, in order to break cycle
of base(op) <– net <– netop, and keep utils only in base.py.

	ENH(op): allow Operations WITHOUT any NEEDS.

	ENH(op): allow Operation FUNCTIONS to return directly Dictionaries.

	ENH(op): validate function Results against operation provides;
jetsam now includes results variables: results_fn & results_op.

	BREAK(op): drop unused Operation._after_init() pickle-hook; use dill instead.

	refact(op): convert Operation._validate() into a function,
to be called by clients wishing to automate operation construction.

	refact(op): replace **kwargs with named-args in class:FunctionalOperation,
because it allowed too wide args, and offered no help to the user.

	REFACT(configs): privatize network._execution_configs; expose more
config-methods from base package.

v2.1.1 (12 Nov 2019, @ankostis): global configs

	BREAK: drop Python-3.6 compatibility.

	FEAT: Use (possibly multiple) global configurations for all networks,
stored in a contextvars.ContextVar.

	ENH/BREAK: Use a (possibly) single execution_pool in global-configs.

	feat: add abort flag in global-configs.

	feat: add skip_evictions flag in global-configs.

v2.1.0 (20 Oct 2019, @ankostis): DROP BW-compatible, Restruct modules/API, Plan perfect evictions

The first non pre-release for 2.x train.

	BRAKE API: DROP Operation’s params - use funtools.partial() instead.

	BRAKE API: DROP Backward-Compatible Data & Operation classes,

	BRAKE: DROP Pickle workarounds - expected to use dill instead.

	break(jetsam): drop “graphtik_` prefix from annotated attribute

	ENH(op): now operation() supported the “builder pattern” with
operation.withset().

	REFACT: renamed internal package functional –> nodes and moved classes around,
to break cycles easier, (base works as suppposed to), not to import early everything,
but to fail plot early if pydot dependency missing.

	REFACT: move PLAN and compute() up, from Network --> NetworkOperation.

	ENH(NET): new PLAN BULDING algorithm produces PERFECT EVICTIONS,
that is, it gradually eliminates from the solution all non-asked outputs.

	enh: pruning now cleans isolated data.

	enh: eviction-instructions are inserted due to two different conditions:
once for unneeded data in the past, and another for unused produced data
(those not belonging typo the pruned dag).

	enh: discard immediately irrelevant inputs.

	ENH(net): changed results, now unrelated inputs are not included in solution.

	refact(sideffect): store them as node-attributes in DAG, fix their combination
with pinning & eviction.

	fix(parallel): eviction was not working due to a typo 65 commits back!

v2.0.0b1 (15 Oct 2019, @ankostis): Rebranded as Graphtik for Python 3.6+

Continuation of yahoo#30 [https://github.com/yahoo/graphkit/issues/30] as yahoo#31 [https://github.com/yahoo/graphkit/issues/31], containing review-fixes in huyng/graphkit#1.

Network

	FIX: multithreaded operations were failing due to shared
ExecutionPlan.executed.

	FIX: prunning sometimes were inserting plan string in DAG.
(not _DataNode).

	ENH: heavily reinforced exception annotations (“jetsam”):

	FIX: (8f3ec3a) outer graphs/ops do not override the inner cause.

	ENH: retrofitted exception-annotations as a single dictionary, to print it in one shot
(8f3ec3a & 8d0de1f)

	enh: more data in a dictionary

	TCs: Add thorough TCs (8f3ec3a & b8063e5).

	REFACT: rename Delete–>`Evict`, removed Placeholder from nadanodes, privatize node-classes.

	ENH: collect “jetsam” on errors and annotate exceptions with them.

	ENH(sideffects): make them always DIFFERENT from regular DATA, to allow to co-exist.

	fix(sideffects): typo in add_op() were mixing needs/provides.

	enh: accept a single string as outputs when running graphs.

Testing & other code:

	TCs: pytest now checks sphinx-site builds without any warnings.

	Established chores with build services:

	Travis (and auto-deploy to PyPi),

	codecov

	ReadTheDocs

v1.3.0 (Oct 2019, @ankostis): NEVER RELEASED: new DAG solver, better plotting & “sideffect”

Kept external API (hopefully) the same, but revamped pruning algorithm and
refactored network compute/compile structure, so results may change; significantly
enhanced plotting. The only new feature actually is the sideffect` modifier.

Network:

	FIX(yahoo#18 [https://github.com/yahoo/graphkit/issues/18], yahoo#26 [https://github.com/yahoo/graphkit/issues/26], yahoo#29 [https://github.com/yahoo/graphkit/issues/29], yahoo#17 [https://github.com/yahoo/graphkit/issues/17], yahoo#20 [https://github.com/yahoo/graphkit/issues/20]): Revamped DAG SOLVER
to fix bad pruning described in yahoo#24 [https://github.com/yahoo/graphkit/issues/24] & yahoo#25 [https://github.com/yahoo/graphkit/issues/25]

Pruning now works by breaking incoming provide-links to any given
intermedediate inputs dropping operations with partial inputs or without outputs.

The end result is that operations in the graph that do not have all inputs satisfied,
they are skipped (in v1.2.4 they crashed).

Also started annotating edges with optional/sideffects, to make proper use of
the underlying networkx graph.

[image: graphtik-v1.3.0 flowchart]

	REFACT(yahoo#21 [https://github.com/yahoo/graphkit/issues/21], yahoo#29 [https://github.com/yahoo/graphkit/issues/29]): Refactored Network and introduced ExecutionPlan to keep
compilation results (the old steps list, plus input/output names).

Moved also the check for when to evict a value, from running the execution-plan,
to whenbuilding it; thus, execute methods don’t need outputs anymore.

	ENH(yahoo#26 [https://github.com/yahoo/graphkit/issues/26]): “Pin* input values that may be overriten by calculated ones.

This required the introduction of the new _PinInstruction in
the execution plan.

	FIX(yahoo#23 [https://github.com/yahoo/graphkit/issues/23], yahoo#22 [https://github.com/yahoo/graphkit/issues/22]-2.4.3): Keep consistent order of networkx.DiGraph
and sets, to generate deterministic solutions.

Unfortunately, it non-determinism has not been fixed in < PY3.5, just
reduced the frequency of spurious failures [https://travis-ci.org/yahoo/graphkit/builds/594729787], caused by
unstable dicts, and the use of subgraphs.

	enh: Mark outputs produced by NetworkOperation’s needs as optional.
TODO: subgraph network-operations would not be fully functional until
“optional outpus” are dealt with (see yahoo#22 [https://github.com/yahoo/graphkit/issues/22]-2.5).

	enh: Annotate operation exceptions with ExecutionPlan to aid debug sessions,

	drop: methods list_layers()/show layers() not needed, repr() is
a better replacement.

Plotting:

	ENH(yahoo#13 [https://github.com/yahoo/graphkit/issues/13], yahoo#26 [https://github.com/yahoo/graphkit/issues/26], yahoo#29 [https://github.com/yahoo/graphkit/issues/29]): Now network remembers last plan and uses that
to overlay graphs with the internals of the planing and execution: [image: sample graphtik plot]

	execution-steps & order

	evict & pin instructions

	given inputs & asked outputs

	solution values (just if they are present)

	“optional” needs & broken links during pruning

	REFACT: Move all API doc on plotting in a single module, splitted in 2 phases,
build DOT & render DOT

	FIX(yahoo#13 [https://github.com/yahoo/graphkit/issues/13]): bring plot writing into files up-to-date from PY2; do not create plot-file
if given file-extension is not supported.

	FEAT: path pydot library [https://pypi.org/project/pydot/] to support rendering
in Jupyter notebooks.

Testing & other code:

	Increased coverage from 77% –> 90%.

	ENH(yahoo#28 [https://github.com/yahoo/graphkit/issues/28]): use pytest, to facilitate TCs parametrization.

	ENH(yahoo#30 [https://github.com/yahoo/graphkit/issues/30]): Doctest all code; enabled many assertions that were just print-outs
in v1.2.4.

	FIX: operation.__repr__() was crashing when not all arguments
had been set - a condition frequtnly met during debugging session or failed
TCs (inspired by @syamajala’s 309338340).

	enh: Sped up parallel/multihtread TCs by reducing delays & repetitions.

Tip

You need pytest -m slow to run those slow tests.

Chore & Docs:

	FEAT: add changelog in CHANGES.rst file, containing flowcharts
to compare versions v1.2.4 <--> v1.3..0.

	enh: updated site & documentation for all new features, comparing with v1.2.4.

	enh(yahoo#30 [https://github.com/yahoo/graphkit/issues/30]): added “API reference’ chapter.

	drop(build): sphinx_rtd_theme library is the default theme for Sphinx now.

	enh(build): Add test pip extras.

	sound: https://www.youtube.com/watch?v=-527VazA4IQ,
https://www.youtube.com/watch?v=8J182LRi8sU&t=43s

v1.2.4 (Mar 7, 2018)

	Issues in pruning algorithm: yahoo#24 [https://github.com/yahoo/graphkit/issues/24], yahoo#25 [https://github.com/yahoo/graphkit/issues/25]

	Blocking bug in plotting code for Python-3.x.

	Test-cases without assertions (just prints).

[image: graphtik-v1.2.4 flowchart]

1.2.2 (Mar 7, 2018, @huyng): Fixed versioning

Versioning now is manually specified to avoid bug where the version
was not being correctly reflected on pip install deployments

1.2.1 (Feb 23, 2018, @huyng): Fixed multi-threading bug and faster compute through caching of find_necessary_steps

We’ve introduced a cache to avoid computing find_necessary_steps multiple times
during each inference call.

This has 2 benefits:

	It reduces computation time of the compute call

	It avoids a subtle multi-threading bug in networkx when accessing the graph
from a high number of threads.

1.2.0 (Feb 13, 2018, @huyng)

Added set_execution_method(‘parallel’) for execution of graphs in parallel.

1.1.0 (Nov 9, 2017, @huyng)

Update setup.py

1.0.4 (Nov 3, 2017, @huyng): Networkx 2.0 compatibility

Minor Bug Fixes:

	Compatibility fix for networkx 2.0

	net.times now only stores timing info from the most recent run

1.0.3 (Jan 31, 2017, @huyng): Make plotting dependencies optional

	Merge pull request yahoo#6 [https://github.com/yahoo/graphkit/issues/6] from yahoo/plot-optional

	make plotting dependencies optional

1.0.2 (Sep 29, 2016, @pumpikano): Merge pull request yahoo#5 [https://github.com/yahoo/graphkit/issues/5] from yahoo/remove-packaging-dep

	Remove ‘packaging’ as dependency

1.0.1 (Aug 24, 2016)

1.0 (Aug 2, 2016, @robwhess)

First public release in PyPi & GitHub.

	Merge pull request yahoo#3 [https://github.com/yahoo/graphkit/issues/3] from robwhess/travis-build

	Travis build

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 graphtik	

 	
 	
 graphtik.base	

 	
 	
 graphtik.netop	

 	
 	
 graphtik.network	

 	
 	
 graphtik.op	

 	
 	
 graphtik.plot	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | V
 | W

_

 	
 	_abc_impl (graphtik.network.ExecutionPlan attribute)

 	(graphtik.network.Network attribute)

 	_append_operation() (graphtik.network.Network method)

 	_apply_graph_predicate() (graphtik.network.Network method)

 	_build_execution_steps() (graphtik.network.Network method)

 	_build_pydot() (graphtik.network.ExecutionPlan method)

 	(graphtik.network.Network method)

 	_cached_plans (graphtik.network.Network attribute)

 	
 	_call_operation() (graphtik.network.ExecutionPlan method)

 	_check_if_aborted() (graphtik.network.ExecutionPlan method)

 	_execute_sequential_method() (graphtik.network.ExecutionPlan method)

 	_execute_thread_pool_barrier_method() (graphtik.network.ExecutionPlan method)

 	_execution_configs (in module graphtik.network)

 	_pin_data_in_solution() (graphtik.network.ExecutionPlan method)

 	_prune_graph() (graphtik.network.Network method)

 	_unsatisfied_operations() (graphtik.network.Network method)

A

 	
 	AbortedException

 	
 	aslist() (in module graphtik.base)

 	astuple() (in module graphtik.base)

B

 	
 	broken_dag (graphtik.network.ExecutionPlan attribute)

 	
 	build_pydot() (in module graphtik.plot)

C

 	
 	compile() (graphtik.network.Network method)

 	compose() (in module graphtik)

 	(in module graphtik.netop)

 	
 	compute() (graphtik.netop.NetworkOperation method)

 	(graphtik.op.FunctionalOperation method)

 	(graphtik.op.Operation method)

D

 	
 	default_jupyter_render (in module graphtik.plot)

E

 	
 	execute() (graphtik.network.ExecutionPlan method)

 	
 	ExecutionPlan (class in graphtik.network)

F

 	
 	FunctionalOperation (class in graphtik.op)

G

 	
 	graphtik (module)

 	graphtik.base (module)

 	graphtik.netop (module)

 	
 	graphtik.network (module)

 	graphtik.op (module)

 	graphtik.plot (module)

I

 	
 	inputs (graphtik.netop.NetworkOperation attribute)

J

 	
 	jetsam() (in module graphtik.base)

L

 	
 	last_plan (graphtik.netop.NetworkOperation attribute)

 	
 	legend() (in module graphtik.plot)

M

 	
 	method (graphtik.netop.NetworkOperation attribute)

N

 	
 	narrowed() (graphtik.netop.NetworkOperation method)

 	(graphtik.network.Network method)

 	
 	Network (class in graphtik.network)

 	NetworkOperation (class in graphtik.netop)

O

 	
 	Operation (class in graphtik.op)

 	operation (class in graphtik.op)

 	
 	optional (class in graphtik.modifiers)

 	outputs (graphtik.netop.NetworkOperation attribute)

 	overwrites_collector (graphtik.netop.NetworkOperation attribute)

P

 	
 	plot() (graphtik.base.Plotter method)

 	
 	Plotter (class in graphtik.base)

R

 	
 	render_pydot() (in module graphtik.plot)

 	
 	reparse_operation_data() (in module graphtik.op)

S

 	
 	set_execution_method() (graphtik.netop.NetworkOperation method)

 	set_overwrites_collector() (graphtik.netop.NetworkOperation method)

 	
 	sideffect (class in graphtik.modifiers)

 	supported_plot_formats() (in module graphtik.plot)

V

 	
 	validate() (graphtik.network.ExecutionPlan method)

 	
 	vararg (class in graphtik.modifiers)

 	varargs (class in graphtik.modifiers)

W

 	
 	withset() (graphtik.op.FunctionalOperation method)

 	(graphtik.op.operation method)

 _static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Graphtik

 		
 Operations

 		
 Operations are just functions

 		
 Specifying graph structure: provides and needs

 		
 Instantiating operations

 		
 Decorator specification

 		
 Functional specification

 		
 Modifiers on operation inputs and outputs

 		
 Optionals

 		
 Varargs

 		
 Sideffects

 		
 Graph Composition

 		
 The compose factory

 		
 Simple composition of operations

 		
 Running a computation graph

 		
 Producing a subset of outputs

 		
 Short-circuiting a graph computation

 		
 Adding on to an existing computation graph

 		
 More complicated composition: merging computation graphs

 		
 Plotting and Debugging

 		
 Plotting

 		
 Errors & debugging

 		
 Execution internals

 		
 API Reference

 		
 Package: graphtik

 		
 Module: base

 		
 Module: op

 		
 Module: netop

 		
 Module: network

 		
 Module: plot

 		
 Changes

 		
 TODO

 		
 v4.0.0 (11 Dec 2019, @ankostis): NESTED merge, revert v3.x Unvarying, immutable OPs, “color” nodes

 		
 v3.1.0 (6 Dec 2019, @ankostis): cooler prune()

 		
 v3.0.0 (2 Dec 2019, @ankostis): UNVARYING NetOperations, narrowed, API refact

 		
 v2.3.0 (24 Nov 2019, @ankostis): Zoomable SVGs & more op jobs

 		
 v2.2.0 (20 Nov 2019, @ankostis): enhance OPERATIONS & restruct their modules

 		
 v2.1.1 (12 Nov 2019, @ankostis): global configs

 		
 v2.1.0 (20 Oct 2019, @ankostis): DROP BW-compatible, Restruct modules/API, Plan perfect evictions

 		
 v2.0.0b1 (15 Oct 2019, @ankostis): Rebranded as Graphtik for Python 3.6+

 		
 Network

 		
 Testing & other code:

 		
 v1.3.0 (Oct 2019, @ankostis): NEVER RELEASED: new DAG solver, better plotting & “sideffect”

 		
 Network:

 		
 Plotting:

 		
 Testing & other code:

 		
 Chore & Docs:

 		
 v1.2.4 (Mar 7, 2018)

 		
 1.2.2 (Mar 7, 2018, @huyng): Fixed versioning

 		
 1.2.1 (Feb 23, 2018, @huyng): Fixed multi-threading bug and faster compute through caching of find_necessary_steps

 		
 1.2.0 (Feb 13, 2018, @huyng)

 		
 1.1.0 (Nov 9, 2017, @huyng)

 		
 1.0.4 (Nov 3, 2017, @huyng): Networkx 2.0 compatibility

 		
 1.0.3 (Jan 31, 2017, @huyng): Make plotting dependencies optional

 		
 1.0.2 (Sep 29, 2016, @pumpikano): Merge pull request yahoo#5 from yahoo/remove-packaging-dep

 		
 1.0.1 (Aug 24, 2016)

 		
 1.0 (Aug 2, 2016, @robwhess)

_static/ajax-loader.gif

