
graphtik Documentation
Release src: 4.4.1, git: v4.4.1

Yahoo Vision and Machine Learning Team: Huy Nguyen, Arel Cordero, Pierre Garrigues, Tobi Baumgartner, Rob Hess

Dec 22, 2019

Contents

1 Lightweight computation graphs for Python 3
1.1 Operations . 3

1.1.1 The operation builder factory . 4
1.1.2 Operations are just functions . 6
1.1.3 Specifying graph structure: provides and needs . 6
1.1.4 Instantiating operations . 7
1.1.5 Modifiers on operation inputs and outputs . 8

1.2 Graph Composition . 11
1.2.1 The compose factory . 11
1.2.2 Simple composition of operations . 12
1.2.3 Running a computation graph . 12
1.2.4 Adding on to an existing computation graph . 13
1.2.5 More complicated composition: merging computation graphs 14

1.3 Plotting and Debugging . 15
1.3.1 Plotting . 15
1.3.2 Errors & debugging . 16
1.3.3 Execution internals . 17

1.4 Architecture . 17
1.5 API Reference . 21

1.5.1 Module: op . 21
1.5.2 Module: netop . 21
1.5.3 Module: network . 24
1.5.4 Module: plot . 30
1.5.5 Module: base . 31

1.6 Graphtik Changelog . 34
1.6.1 TODOs . 34
1.6.2 GitHub Releases . 35
1.6.3 Changelog . 35

2 Quick start 45

Python Module Index 47

Index 49

i

ii

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

(src: 4.4.1, git: v4.4.1 , Dec 22, 2019)

It’s a DAG all the way down!

Contents 1

https://pypi.python.org/pypi/graphtik/
https://pypi.python.org/pypi/graphtik/
https://github.com/pygraphkit/graphtik/releases
https://pypi.python.org/pypi/graphtik/
https://travis-ci.org/pygraphkit/graphtik/builds
https://graphtik.readthedocs.org
https://codecov.io/gh/pygraphkit/graphtik
https://github.com/pygraphkit/graphtik
https://github.com/pygraphkit/graphtik
https://github.com/pygraphkit/graphtik
https://github.com/pygraphkit/graphtik/issues

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

2 Contents

CHAPTER 1

Lightweight computation graphs for Python

Graphtik is an an understandable and lightweight Python module for building and running ordered graphs of compu-
tations. The API posits a fair compromise between features and complexity, without precluding any. It can be used as
is to build machine learning pipelines for data science projects. It should be extendable to act as the core for a custom
ETL engine or a workflow-processor for interdependent files and processes.

Graphtik sprang from Graphkit to experiment with Python 3.6+ features.

1.1 Operations

At a high level, an operation is a node in a computation graph. Graphtik uses an Operation class to abstractly
represent these computations. The class specifies the requirments for a function to participate in a computation graph;
those are its input-data needs, and the output-data it provides.

The FunctionalOperation provides a lightweight wrapper around an arbitrary function to define those specifi-
cations.

class graphtik.op.FunctionalOperation(fn: Callable, name, needs: Union[Collection[T_co],
str, None] = None, provides: Union[Collection[T_co],
str, None] = None, aliases: Mapping[KT, VT_co] =
None, *, parents: Tuple = None, reschedule=None,
endured=None, returns_dict=None, node_props:
Mapping[KT, VT_co] = None)

An operation performing a callable (ie a function, a method, a lambda).

provides
Names of output values this operation provides (including aliases).

real_provides
Names of output values the underlying function provides.

Tip: Use operation() builder class to build instances of this class instead.

3

https://github.com/yahoo/graphkit

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

__call__(*args, **kwargs)
Call self as a function.

__init__(fn: Callable, name, needs: Union[Collection[T_co], str, None] = None, provides:
Union[Collection[T_co], str, None] = None, aliases: Mapping[KT, VT_co] = None, *, par-
ents: Tuple = None, reschedule=None, endured=None, returns_dict=None, node_props:
Mapping[KT, VT_co] = None)

Build a new operation out of some function and its requirements.

Parameters

• name – a name for the operation (e.g. ‘conv1’, ‘sum’, etc..); it will be prefixed by parents.

• needs – Names of input data objects this operation requires.

• provides – Names of the real output values the underlying function provides.

• aliases – an optional mapping of real provides to additional ones

• parents – a tuple wth the names of the parents, prefixing name, but also kept for equal-
ity/hash check.

• reschedule – If true, underlying callable may produce a subset of provides, and the
plan must then reschedule after the operation has executed. In that case, it makes more
sense for the callable to returns_dict.

• endured – If true, even if callable fails, solution will reschedule; ignored if endurance
enabled globally.

• returns_dict – if true, it means the fn returns a dictionary with all provides, and no
further processing is done on them (i.e. the returned output-values are not zipped with
provides)

• node_props – added as-is into NetworkX graph

compute(named_inputs, outputs=None)→ dict
Compute (optional) asked outputs for the given named_inputs.

It is called by Network. End-users should simply call the operation with named_inputs as kwargs.

Parameters named_inputs – the input values with which to feed the computation.

Returns list Should return a list values representing the results of running the feed-forward com-
putation on inputs.

1.1.1 The operation builder factory

There is a better way to instantiate an FunctionalOperation than simply constructing it: use the operation
builder class:

class graphtik.operation(fn: Callable = None, *, name=None, needs: Union[Collection[T_co],
str, None] = None, provides: Union[Collection[T_co], str, None] = None,
aliases: Mapping[KT, VT_co] = None, reschedule=None, endured=None,
returns_dict=None, node_props: Mapping[KT, VT_co] = None)

A builder for graph-operations wrapping functions.

Parameters

• fn (function) – The function used by this operation. This does not need to be specified
when the operation object is instantiated and can instead be set via __call__ later.

• name (str) – The name of the operation in the computation graph.

4 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/stdtypes.html#str

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

• needs – Names of input data objects this operation requires. These should correspond to
the args of fn.

• provides – Names of output data objects this operation provides. If more than one given,
those must be returned in an iterable, unless returns_dict is true, in which case a dictionary
with as many elements must be returned

• aliases – an optional mapping of provides to additional ones

• reschedule – If true, underlying callable may produce a subset of provides, and the plan
must then reschedule after the operation has executed. In that case, it makes more sense for
the callable to returns_dict.

• endured – If true, even if callable fails, solution will reschedule. ignored if endurance
enabled globally.

• returns_dict – if true, it means the fn returns a dictionary with all provides, and no
further processing is done on them (i.e. the returned output-values are not zipped with
provides)

• node_props – added as-is into NetworkX graph

Returns when called, it returns a FunctionalOperation

Example:

This is an example of its use, based on the “builder pattern”:

>>> from graphtik import operation

>>> opb = operation(name='add_op')
>>> opb.withset(needs=['a', 'b'])
operation(name='add_op', needs=['a', 'b'], provides=[], fn=None)
>>> opb.withset(provides='SUM', fn=sum)
operation(name='add_op', needs=['a', 'b'], provides=['SUM'], fn='sum')

You may keep calling withset() till you invoke a final __call__() on the builder; then you get the actual
FunctionalOperation instance:

>>> # Create `Operation` and overwrite function at the last moment.
>>> opb(sum)
FunctionalOperation(name='add_op', needs=['a', 'b'], provides=['SUM'], fn='sum')

Tip: Remember to call once more the builder class at the end, to get the actual operation instance.

__call__(fn: Callable = None, *, name=None, needs: Union[Collection[T_co], str, None] = None,
provides: Union[Collection[T_co], str, None] = None, aliases: Mapping[KT, VT_co] =
None, reschedule=None, endured=None, returns_dict=None, node_props: Mapping[KT,
VT_co] = None)→ graphtik.op.FunctionalOperation

This enables operation to act as a decorator or as a functional operation, for example:

@operator(name='myadd1', needs=['a', 'b'], provides=['c'])
def myadd(a, b):

return a + b

or:

1.1. Operations 5

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

def myadd(a, b):
return a + b

operator(name='myadd1', needs=['a', 'b'], provides=['c'])(myadd)

Parameters fn (function) – The function to be used by this operation.

Returns Returns an operation class that can be called as a function or composed into a compu-
tation graph.

withset(*, fn: Callable = None, name=None, needs: Union[Collection[T_co], str, None] = None,
provides: Union[Collection[T_co], str, None] = None, aliases: Mapping[KT, VT_co] = None,
reschedule=None, endured=None, returns_dict=None, node_props: Mapping[KT, VT_co] =
None)→ graphtik.op.operation

See operation for arguments here.

1.1.2 Operations are just functions

At the heart of each operation is just a function, any arbitrary function. Indeed, you can instantiate an operation
with a function and then call it just like the original function, e.g.:

>>> from operator import add
>>> from graphtik import operation

>>> add_op = operation(name='add_op', needs=['a', 'b'], provides=['a_plus_b'])(add)

>>> add_op(3, 4) == add(3, 4)
True

1.1.3 Specifying graph structure: provides and needs

Of course, each operation is more than just a function. It is a node in a computation graph, depending on other
nodes in the graph for input data and supplying output data that may be used by other nodes in the graph (or as a graph
output). This graph structure is specified via the provides and needs arguments to the operation constructor.
Specifically:

• provides: this argument names the outputs (i.e. the returned values) of a given operation. If multiple
outputs are specified by provides, then the return value of the function comprising the operation must
return an iterable.

• needs: this argument names data that is needed as input by a given operation. Each piece of data named
in needs may either be provided by another operation in the same graph (i.e. specified in the provides
argument of that operation), or it may be specified as a named input to a graph computation (more on graph
computations here).

When many operations are composed into a computation graph (see Graph Composition for more on that), Graphtik
matches up the values in their needs and provides to form the edges of that graph.

Let’s look again at the operations from the script in Quick start, for example:

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

>>> # Computes |a|^p.

(continues on next page)

6 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

(continued from previous page)

>>> def abspow(a, p):
... c = abs(a) ** p
... return c

>>> # Compose the mul, sub, and abspow operations into a computation graph.
>>> graphop = compose("graphop",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
... operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed
→˓"])
... (partial(abspow, p=3))
...)

Tip: Notice the use of functools.partial() to set parameter p to a contant value.

The needs and provides arguments to the operations in this script define a computation graph that looks like this
(where the oval are operations, squares/houses are data):

Tip: See Plotting on how to make diagrams like this.

1.1.4 Instantiating operations

There are several ways to instantiate an operation, each of which might be more suitable for different scenarios.

Decorator specification

If you are defining your computation graph and the functions that comprise it all in the same script, the decorator
specification of operation instances might be particularly useful, as it allows you to assign computation graph
structure to functions as they are defined. Here’s an example:

>>> from graphtik import operation, compose

>>> @operation(name='foo_op', needs=['a', 'b', 'c'], provides='foo')
... def foo(a, b, c):
... return c * (a + b)

>>> graphop = compose('foo_graph', foo)

Functional specification

If the functions underlying your computation graph operations are defined elsewhere than the script in which your
graph itself is defined (e.g. they are defined in another module, or they are system functions), you can use the functional
specification of operation instances:

>>> from operator import add, mul
>>> from graphtik import operation, compose

(continues on next page)

1.1. Operations 7

https://docs.python.org/3.8/library/functools.html#functools.partial

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

(continued from previous page)

>>> add_op = operation(name='add_op', needs=['a', 'b'], provides='sum')(add)
>>> mul_op = operation(name='mul_op', needs=['c', 'sum'], provides='product')(mul)

>>> graphop = compose('add_mul_graph', add_op, mul_op)

The functional specification is also useful if you want to create multiple operation instances from the same func-
tion, perhaps with different parameter values, e.g.:

>>> from functools import partial

>>> def mypow(a, p=2):
... return a ** p

>>> pow_op1 = operation(name='pow_op1', needs=['a'], provides='a_squared')(mypow)
>>> pow_op2 = operation(name='pow_op2', needs=['a'], provides='a_cubed
→˓')(partial(mypow, p=3))

>>> graphop = compose('two_pows_graph', pow_op1, pow_op2)

A slightly different approach can be used here to accomplish the same effect by creating an operation “builder pattern”:

>>> def mypow(a, p=2):
... return a ** p

>>> pow_op_factory = operation(mypow, needs=['a'], provides='a_squared')

>>> pow_op1 = pow_op_factory(name='pow_op1')
>>> pow_op2 = pow_op_factory.withset(name='pow_op2', provides='a_cubed
→˓')(partial(mypow, p=3))
>>> pow_op3 = pow_op_factory(lambda a: 1, name='pow_op3')

>>> graphop = compose('two_pows_graph', pow_op1, pow_op2, pow_op3)
>>> graphop(a=2)
{'a': 2, 'a_squared': 4, 'a_cubed': 1}

Note: You cannot call again the factory to overwrite the function, you have to use either the fn= keyword with
withset() method or call once more.

1.1.5 Modifiers on operation inputs and outputs

Certain modifiers are available to apply to input or output values in needs and provides, for example, to designate
optional inputs, or “ghost” sideffects inputs & outputs. These modifiers are available in the graphtik.modifiers
module:

Optionals

class graphtik.modifiers.optional
An optional need signifies that the function’s argument may not receive a value.

Only input values in needs may be designated as optional using this modifier. An operation will receive a
value for an optional need only if if it is available in the graph at the time of its invocation. The operation’s

8 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

function should have a defaulted parameter with the same name as the opetional, and the input value will be
passed as a keyword argument, if it is available.

Here is an example of an operation that uses an optional argument:

>>> from graphtik import operation, compose, optional

>>> def myadd(a, b, c=0):
... return a + b + c

Designate c as an optional argument:

>>> graph = compose('mygraph',
... operation(name='myadd', needs=['a', 'b', optional('c')], provides='sum
→˓')(myadd)
...)
>>> graph
NetworkOperation('mygraph',

needs=['a', 'b', optional('c')],
provides=['sum'],
x1ops)

The graph works with and without c provided as input:

>>> graph(a=5, b=2, c=4)['sum']
11
>>> graph(a=5, b=2)
{'a': 5, 'b': 2, 'sum': 7}

Varargs

class graphtik.modifiers.vararg
Like optional but feeds as ONE OF the *args into the function (instead of **kwargs).

For instance:

>>> from graphtik import operation, compose, vararg

>>> def addall(a, *b):
... return a + sum(b)

Designate b & c as an vararg arguments:

>>> graph = compose('mygraph',
... operation(name='addall', needs=['a', vararg('b'), vararg('c')],
... provides='sum')(addall)
...)
>>> graph
NetworkOperation('mygraph',

needs=['a', optional('b'), optional('c')],
provides=['sum'],
x1ops)

The graph works with and without any of b and c inputs:

>>> graph(a=5, b=2, c=4)['sum']
11

(continues on next page)

1.1. Operations 9

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

(continued from previous page)

>>> graph(a=5, b=2)
{'a': 5, 'b': 2, 'sum': 7}
>>> graph(a=5)
{'a': 5, 'sum': 5}

class graphtik.modifiers.varargs
An optional like vararg feeds as MANY *args into the function (instead of **kwargs).

Read also the example test-case in: test/test_op.py:test_varargs()

Sideffects

class graphtik.modifiers.sideffect
A sideffect data-dependency participates in the graph but never given/asked in functions.

Both inputs & outputs in needs & provides may be designated as sideffects using this modifier. Sideffects
work as usual while solving the graph but they do not interact with the operation’s function; specifically:

• input sideffects are NOT fed into the function;

• output sideffects are NOT expected from the function.

Their purpose is to describe operations that modify the internal state of some of their arguments (“side-effects”).
A typical use case is to signify columns required to produce new ones in pandas dataframes:

>>> from graphtik import operation, compose, sideffect

>>> # Function appending a new dataframe column from two pre-existing ones.
>>> def addcolumns(df):
... df['sum'] = df['a'] + df['b']

Designate a, b & sum column names as an sideffect arguments:

>>> graph = compose('mygraph',
... operation(
... name='addcolumns',
... needs=['df', sideffect('df.b')], # sideffect names can be anything
... provides=[sideffect('df.sum')])(addcolumns)
...)
>>> graph
NetworkOperation('mygraph', needs=['df', 'sideffect(df.b)'],

provides=['sideffect(df.sum)'], x1ops)

>>> df = pd.DataFrame({'a': [5, 0], 'b': [2, 1]})
>>> graph({'df': df})['df']

a b
0 5 2
1 0 1

We didn’t get the sum column because the b sideffect was unsatisfied. We have to add its key to the inputs (with
any value):

>>> graph({'df': df, sideffect("df.b"): 0})['df']
a b sum

0 5 2 7
1 0 1 1

10 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

Note that regular data in needs and provides do not match same-named sideffects. That is, in the following
operation, the prices input is different from the sideffect(prices) output:

>>> def upd_prices(sales_df, prices):
... sales_df["Prices"] = prices

>>> operation(fn=upd_prices,
... name="upd_prices",
... needs=["sales_df", "price"],
... provides=[sideffect("price")])
operation(name='upd_prices', needs=['sales_df', 'price'],

provides=['sideffect(price)'], fn='upd_prices')

Note: An operation with sideffects outputs only, have functions that return no value at all (like the one
above). Such operation would still be called for their side-effects.

Tip: You may associate sideffects with other data to convey their relationships, simply by including their names
in the string - in the end, it’s just a string - but no enforcement will happen from graphtik.

>>> sideffect("price[sales_df]")
'sideffect(price[sales_df])'

1.2 Graph Composition

Graphtik’s compose factory handles the work of tying together operation instances into a runnable computation
graph.

1.2.1 The compose factory

For now, here’s the specification of compose. We’ll get into how to use it in a second.

graphtik.compose(name, op1, *operations, outputs: Union[Collection[T_co], str, None] = None,
reschedule=None, endured=None, merge=False, node_props=None, method=None)
→ graphtik.netop.NetworkOperation

Composes a collection of operations into a single computation graph, obeying the merge property, if set in the
constructor.

Parameters

• name (str) – A optional name for the graph being composed by this object.

• op1 – syntactically force at least 1 operation

• operations – Each argument should be an operation instance created using
operation.

• merge (bool) – If True, this compose object will attempt to merge together operation
instances that represent entire computation graphs. Specifically, if one of the operation
instances passed to this compose object is itself a graph operation created by an earlier
use of compose the sub-operations in that graph are compared against other operations
passed to this compose instance (as well as the sub-operations of other graphs passed to

1.2. Graph Composition 11

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#bool

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

this compose instance). If any two operations are the same (based on name), then that
operation is computed only once, instead of multiple times (one for each time the operation
appears).

• reschedule – applies reschedule to all contained operations

• endured – applies endurance to all contained operations

• node_props – added as-is into NetworkX graph, to provide for filtering by
NetworkOperation.narrowed().

• method – either parallel or None (default); if "parallel", launches multi-
threading. Set when invoking a composed graph or by NetworkOperation.
set_execution_method().

Returns Returns a special type of operation class, which represents an entire computation graph as
a single operation.

Raises ValueError – If the net‘ cannot produce the asked outputs from the given inputs.

1.2.2 Simple composition of operations

The simplest use case for compose is assembling a collection of individual operations into a runnable computation
graph. The example script from Quick start illustrates this well:

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

>>> # Computes |a|^p.
>>> def abspow(a, p):
... c = abs(a) ** p
... return c

>>> # Compose the mul, sub, and abspow operations into a computation graph.
>>> graphop = compose("graphop",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
... operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed
→˓"])
... (partial(abspow, p=3))
...)

The call here to compose() yields a runnable computation graph that looks like this (where the circles are operations,
squares are data, and octagons are parameters):

1.2.3 Running a computation graph

The graph composed in the example above in Simple composition of operations can be run by simply calling it with a
dictionary argument whose keys correspond to the names of inputs to the graph and whose values are the corresponding
input values. For example, if graph is as defined above, we can run it like this:

Run the graph and request all of the outputs.
>>> out = graphop(a=2, b=5)

(continues on next page)

12 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

(continued from previous page)

>>> out
{'a': 2, 'b': 5, 'ab': 10, 'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

Producing a subset of outputs

By default, calling a graph-operation on a set of inputs will yield all of that graph’s outputs. You can use the outputs
parameter to request only a subset. For example, if graphop is as above:

Run the graph-operation and request a subset of the outputs.
>>> out = graphop.compute({'a': 2, 'b': 5}, outputs="a_minus_ab")
>>> out
{'a_minus_ab': -8}

When using outputs to request only a subset of a graph’s outputs, Graphtik executes only the operation nodes
in the graph that are on a path from the inputs to the requested outputs. For example, the abspow1 operation will not
be executed here.

Short-circuiting a graph computation

You can short-circuit a graph computation, making certain inputs unnecessary, by providing a value in the graph that
is further downstream in the graph than those inputs. For example, in the graph-operation we’ve been working with,
you could provide the value of a_minus_ab to make the inputs a and b unnecessary:

Run the graph-operation and request a subset of the outputs.
>>> out = graphop(a_minus_ab=-8)
>>> out
{'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

When you do this, any operation nodes that are not on a path from the downstream input to the requested outputs
(i.e. predecessors of the downstream input) are not computed. For example, the mul1 and sub1 operations are not
executed here.

This can be useful if you have a graph-operation that accepts alternative forms of the same input. For example, if
your graph-operation requires a PIL.Image as input, you could allow your graph to be run in an API server by
adding an earlier operation that accepts as input a string of raw image data and converts that data into the needed
PIL.Image. Then, you can either provide the raw image data string as input, or you can provide the PIL.Image if
you have it and skip providing the image data string.

1.2.4 Adding on to an existing computation graph

Sometimes you will have an existing computation graph to which you want to add operations. This is simple, since
compose can compose whole graphs along with individual operation instances. For example, if we have graph
as above, we can add another operation to it to create a new graph:

>>> # Add another subtraction operation to the graph.
>>> bigger_graph = compose("bigger_graph",
... graphop,
... operation(name="sub2", needs=["a_minus_ab", "c"], provides="a_minus_ab_minus_c
→˓")(sub)
...)

>>> # Run the graph and print the output.

(continues on next page)

1.2. Graph Composition 13

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

(continued from previous page)

>>> sol = bigger_graph.compute({'a': 2, 'b': 5, 'c': 5}, outputs=["a_minus_ab_minus_c
→˓"])
>>> sol
{'a_minus_ab_minus_c': -13}

This yields a graph which looks like this (see Plotting):

>>> bigger_graph.plot('bigger_example_graph.svg', solution=sol)

1.2.5 More complicated composition: merging computation graphs

Sometimes you will have two computation graphs—perhaps ones that share operations—you want to combine into
one. In the simple case, where the graphs don’t share operations or where you don’t care whether a duplicated
operation is run multiple (redundant) times, you can just do something like this:

combined_graph = compose("combined_graph", graph1, graph2)

However, if you want to combine graphs that share operations and don’t want to pay the price of running redun-
dant computations, you can set the merge parameter of compose() to True. This will consolidate redundant
operation nodes (based on name) into a single node. For example, let’s say we have graphop, as in the exam-
ples above, along with this graph:

>>> # This graph shares the "mul1" operation with graph.
>>> another_graph = compose("another_graph",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="mul2", needs=["c", "ab"], provides=["cab"])(mul)
...)

We can merge graphop and another_graph like so, avoiding a redundant mul1 operation:

>>> merged_graph = compose("merged_graph", graphop, another_graph, merge=True)
>>> print(merged_graph)
NetworkOperation('merged_graph',

needs=['a', 'b', 'ab', 'a_minus_ab', 'c'],
provides=['ab', 'a_minus_ab', 'abs_a_minus_ab_cubed', 'cab'],
x4ops)

This merged_graph will look like this:

As always, we can run computations with this graph by simply calling it:

>>> merged_graph.compute({'a': 2, 'b': 5, 'c': 5}, outputs=["cab"])
{'cab': 50}

14 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

1.3 Plotting and Debugging

1.3.1 Plotting

For Errors & debugging it is necessary to visualize the graph-operation. You may plot the original plot and annotate
on top the execution plan and solution of the last computation, calling methods with arguments like this:

netop.plot(show=True) # open a matplotlib window
netop.plot("netop.svg") # other supported formats: png, jpg, pdf, ...
netop.plot() # without arguments return a pydot.DOT object
netop.plot(solution=solution) # annotate graph with solution values

. . . or for the last . . . :

solution.plot(...)

Fig. 1: The legend for all graphtik diagrams, generated by legend().

The same Plotter.plot() method applies also for:

• NetworkOperation

• Network

• ExecutionPlan

• Solution

each one capable to producing diagrams with increasing complexity. Whenever possible, the top-level plot() meth-
ods will delegate to the ones below; specifically, the netop keeps a transient reference to the last plan. BUT the plan
does not hold such a reference, you have to plot the solution.

For instance, when a net-operation has just been composed, plotting it will come out bare bone, with just the 2 types
of nodes (data & operations), their dependencies, and the sequence of the execution-plan.

But as soon as you run it, the net plot calls will print more of the internals. Internally it delegates to
ExecutionPlan.plot() of NetworkOperation.last_plan attribute, which caches the last run to facili-
tate debugging. If you want the bare-bone diagram, plot the network:

netop.net.plot(...)

If you want all details, plot the solution:

solution.net.plot(...)

Note: For plots, Graphviz program must be in your PATH, and pydot & matplotlib python packages installed.
You may install both when installing graphtik with its plot extras:

pip install graphtik[plot]

1.3. Plotting and Debugging 15

https://graphviz.org

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

Tip: The pydot.Dot instances returned by Plotter.plot() are rendered directly in Jupyter/IPython notebooks
as SVG images.

You may increase the height of the SVG cell output with something like this:

netop.plot(jupyter_render={"svg_element_styles": "height: 600px; width: 100%"})

Check default_jupyter_render for defaults.

1.3.2 Errors & debugging

Graphs may become arbitrary deep. Launching a debugger-session to inspect deeply nested stacks is notoriously hard

As a workaround, when some operation fails, the original exception gets annotated with the folllowing properties, as
a debug aid:

>>> from graphtik import compose, operation
>>> from pprint import pprint

>>> def scream(*args):
... raise ValueError("Wrong!")

>>> try:
... compose("errgraph",
... operation(name="screamer", needs=['a'], provides=["foo"])(scream)
...)(a=None)
... except ValueError as ex:
... pprint(ex.jetsam)
{'aliases': None,
'args': {'args': [None], 'kwargs': {}},
'network': Network(

+--a
+--FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn='scream

→˓')
+--foo),

'operation': FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn=
→˓'scream'),
'outputs': None,
'plan': ExecutionPlan(needs=['a'], provides=['foo'], x1 steps:
+--FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn='scream

→˓')),
'provides': None,
'results_fn': None,
'results_op': None,
'solution': {'a': None}}

In interactive REPL console you may use this to get the last raised exception:

import sys

sys.last_value.jetsam

The following annotated attributes might have meaningfull value on an exception:

network the innermost network owning the failed operation/function

16 Chapter 1. Lightweight computation graphs for Python

https://pypi.org/project/pydot/

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

plan the innermost plan that executing when a operation crashed

operation the innermost operation that failed

args either the input arguments list fed into the function, or a dict with both args & kwargs keys in it.

outputs the names of the outputs the function was expected to return

provides the names eventually the graph needed from the operation; a subset of the above, and not always what
has been declared in the operation.

fn_results the raw results of the operation’s fuction, if any

op_results the results, always a dictionary, as matched with operation’s provides

solution an instance of Solution, contains inputs & outputs till the error happened; note that Solution.
executed contain the list of executed operations so far.

Ofcourse you may use many of the above “jetsam” values when plotting.

Note: The Plotting capabilities, along with the above annotation of exceptions with the internal state of plan/operation
often renders a debugger session unnecessary. But since the state of the annotated values might be incomple, you may
not always avoid one.

1.3.3 Execution internals

Compile & execute network graphs of operations.

1.4 Architecture

COMPUTE

computation

The definition & execution of networked operation is splitted in 1+2 phases:

• COMPOSITION

• COMPILATION

• EXECUTION

. . . it is constrained by these IO data-structures:

• operation(s) (with needs & provides for each one)

• given inputs

• asked outputs

. . . populates these low-level data-structures:

• network graph (COMPOSE time)

• execution dag (COMPILE time)

• execution steps (COMPILE time)

• solution (EXECUTE time)

1.4. Architecture 17

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

. . . and utilizes these main classes:

graphtik.op.FunctionalOperation
graphtik.netop.NetworkOperation
graphtik.network.Network
graphtik.network.ExecutionPlan
graphtik.network.Solution

compose

COMPOSITION The phase where operations are constructed and grouped into netops and corresponding networks.

Tip:

• Use operation() builder class to construct FunctionalOperation instances.

• Use compose() factory to prepare the net internally, and build NetworkOperation instances.

compile

COMPILATION The phase where the Network creates a new execution plan by pruning all graph nodes into a
subgraph dag, and derriving the execution steps.

execute

EXECUTION

sequential The phase where the ExecutionPlan calls the underlying functions of all operations contained in
execution steps, with inputs/outputs taken from the solution.

Currently there are 2 ways to execute:

• sequential

• parallel, with a multiprocessing.ProcessPool

parallel

parallel execution

process pool Execute operation in parallel, with a thread/process pool (instead of sequential). When a process pool
is used, data & operations must be *pickled* to/from the worker process, and that may fail. You may marshal
them with dill library to fix them.

marshal Pickling parallel operations and their inputs/outputs using the dill module.

configurations A global _execution_configs affecting execution stored in a contextvars.ContextVar.

Tip: Instead of directly modifying _execution_configs, prefer the special set_...() & is_...()
methods exposed from the graptik package:

• abort_run() & is_abort() (for disabling evictions globally);

• set_endure_execution() & is_endure_execution() (for enabling endurance globally);

• set_execution_pool() & get_execution_pool() (for parallel executions).

• set_marshal_parallel_tasks() & is_marshal_parallel_tasks()

• set_skip_evictions() & is_skip_evictions()

18 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/library/pickle.html
https://dill.readthedocs.io/en/latest/index.html#module-dill
https://docs.python.org/3.8/library/contextvars.html#contextvars.ContextVar

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

graph

network graph The Network.graph (currently a DAG) contains all FunctionalOperation and
_DataNode nodes of some netop.

They are layed out and connected by repeated calls of Network._append_operation() by Network
constructor.

This graph is then pruned to extract the dag, and the execution steps are calculated, all ingridents for a new
ExecutionPlan.

dag

execution dag There are 2 directed-acyclic-graphs instances used:

• the ExecutionPlan.dag, in the execution plan, which contains the pruned nodes, used to decide the
execution steps;

• the Solution.dag in the solution, which contains the rescheduled nodes.

steps

execution steps The ExecutionPlan.steps contains a list of the operation-nodes only from the dag, topologi-
cally sorted, and interspersed with instruction steps needed to compute the asked outputs from the given inputs.

It is built by Network._build_execution_steps() based on the subgraph dag.

The only instruction step is for performing eviction.

evict

eviction The _EvictInstruction steps erase items from solution as soon as they are not needed further down
the dag, to reduce memory footprint while computing.

solution A Solution instance created internally by NetworkOperation.compute() to hold the values both
inputs & outputs, and the status of executed operations. It is based on a collections.ChainMap, to keep
one dictionary for each operation executed +1 for inputs.

The results of the last operation executed “wins” in the final outputs produced, BUT while executing, the needs
of each operation receive the solution values in reversed order, that is, the 1st operation result (or given input)
wins for some needs name.

Rational:

During execution we want stability (the same input value used by all operations), and that is most
important when consuming input values - otherwise, we would use (possibly overwritten and thus
changing)) intermediate ones.

But at the end we want to affect the calculation results by adding operations into some netop -
furthermore, it wouldn’t be very usefull to get back the given inputs in case of overwrites.

overwrites Values in the solution that have been written by more than one operations, accessed by Solution.
overwrites:

net

network the Network contains a graph of operations and can compile an execution plan or prune a cloned network
for given inputs/outputs/node predicate.

plan

execution plan Class ExecutionPlan perform the execution phase which contains the dag and the steps.

Compileed execution plans are cached in Network._cached_plans across runs with (inputs, outputs, pred-
icate) as key.

1.4. Architecture 19

https://docs.python.org/3.8/library/collections.html#collections.ChainMap

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

inputs a dictionary of named input values given to a single operation, or to a netop, fed into Operation.
compute() method.

outputs A dictionary of computed values returned by a single operation or a netop when method
Operation.compute() is called, or the actual (partial or complete) provides returned by some
FunctionalOperation.

All computed values are retained in it when no specific outputs requested, to NetworkOperation.
compute(), that is, no data-eviction happens.

operation Either the abstract notion of an action with specified needs and provides, or the concrete wraper
FunctionalOperation for arbitrary functions (any callable).

netop

network operation The NetworkOperation class holding a network of operations.

needs A list of names of the compulsory/optional values or sideffects an operation’s underlying callable requires to
execute.

provides A list of names of the values produced when the operation’s underlying callable executes.

sideffects Fictive needs or provides not consumed/produced by the underlying function of an operation, annotated
with sideffect. A sideffect participates in the solution of the graph but is never given/asked to/from func-
tions.

prune

pruning A subphase of compilation performed by method Network._prune_graph(), which extracts a sub-
graph dag that does not contain any unsatisfied operations.

It topologically sorts the graph, and prunes based on given inputs, asked outputs, node predicate and operation
needs & provides.

unsatisfied operation The core of pruning & rescheduling, performed by method network.
_unsatisfied_operations(), which collects all operations that fall into any of these 2 cases:

• they have needs that do not correspond to any of the given inputs or the intermediately computed outputs
of the solution;

• all threir provides are NOT needed by any other operation, nor are asked as outputs.

reschedule

rescheduling

partial outputs

canceled operation The partial pruning of the solution’s dag during execution. It happens when any of these 2
conditions apply:

• an operation is marked with the FunctionalOperation.reschedule attribute, which means that
its underlying callable may produce only a subset of its provides (partial outputs);

• endurance is enabled, either globally (in the configurations), or for a specific operation.

the solution must then reschedule the remaining operations downstreams, and possibly cancel some of those (
assigned in Solution.canceled).

endurance Keep executing as many operations as possible, even if some of them fail. Endurance for
an operation is enabled if set_endure_execution() is true globally in the configurations or if
FunctionalOperation.endurance is true.

You may interogate Solution operations to discover whether they have been:

• Solution.executed successfully;

20 Chapter 1. Lightweight computation graphs for Python

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

• Solution.failed. or

predicate

node predicate A callable(op, node-data) that should return true for nodes to be included in graph during compilation.

1.5 API Reference

graphtik Lightweight computation graphs for Python.
graphtik.op About operation nodes (but not net-ops to break cycle).
graphtik.netop About network operations (those based on graphs)
graphtik.network Compile & execute network graphs of operations.
graphtik.plot
graphtik.base Generic or specific utilities

1.5.1 Module: op

About operation nodes (but not net-ops to break cycle).

class graphtik.op.Operation
An abstract class representing an action with compute().

compute(named_inputs, outputs=None)
Compute (optional) asked outputs for the given named_inputs.

It is called by Network. End-users should simply call the operation with named_inputs as kwargs.

Parameters named_inputs – the input values with which to feed the computation.

Returns list Should return a list values representing the results of running the feed-forward com-
putation on inputs.

graphtik.op.reparse_operation_data(name, needs, provides)
Validate & reparse operation data as lists.

As a separate function to be reused by client code when building operations and detect errors aearly.

1.5.2 Module: netop

About network operations (those based on graphs)

class graphtik.netop.NetworkOperation(operations, name, *, outputs=None, predicate:
Callable[[Any, Mapping[KT, VT_co]], bool] = None,
reschedule=None, endured=None, merge=None,
method=None, node_props=None)

An operation that can compute a network-graph of operations.

Tip: Use compose() factory to prepare the net and build instances of this class.

compile(inputs=None, outputs=<UNSET>, predicate: Callable[[Any, Mapping[KT, VT_co]], bool] =
<UNSET>)→ graphtik.network.ExecutionPlan

Produce a plan for the given args or outputs/predicate narrrowed earlier.

Parameters

1.5. API Reference 21

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

• named_inputs – a string or a list of strings that should be fed to the needs of all opera-
tions.

• outputs – A string or a list of strings with all data asked to compute. If None, all
possible intermediate outputs will be kept. If not given, those set by a previous call to
narrowed() or cstor are used.

• predicate – Will be stored and applied on the next compute() or compile(). If
not given, those set by a previous call to narrowed() or cstor are used.

Returns the execution plan satisfying the given inputs, outputs & predicate

Raises ValueError –

• If outputs asked do not exist in network, with msg:

Unknown output nodes: . . .

• If solution does not contain any operations, with msg:

Unsolvable graph: . . .

• If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs. . .

• If outputs asked cannot be produced by the dag, with msg:

Impossible outputs. . .

compute(named_inputs: Mapping[KT, VT_co], outputs: Union[Collection[T_co], str, None] = <UN-
SET>, predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = <UNSET>) → graph-
tik.network.Solution

Compile a plan & execute the graph, sequentially or parallel.

Parameters

• named_inputs – A maping of names –> values that will be fed to the needs of all
operations. Cloned, not modified.

• outputs – A string or a list of strings with all data asked to compute. If None, all
intermediate data will be kept.

Returns The solution which contains the results of each operation executed +1 for inputs in
separate dictionaries.

Raises ValueError –

• If outputs asked do not exist in network, with msg:

Unknown output nodes: . . .

• If plan does not contain any operations, with msg:

Unsolvable graph: . . .

• If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs. . .

• If outputs asked cannot be produced by the dag, with msg:

Impossible outputs. . .

See also Operation.compute().

last_plan = None
The execution_plan of the last call to compute(), stored as debugging aid.

22 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/exceptions.html#ValueError
https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

method = None
either parallel or None (default); if "parallel", launches multi-threading. When None, sequential by
default.

name = None
The name for the new netop, used when nesting them.

narrowed(outputs: Union[Collection[T_co], str, None] = <UNSET>, predicate: Callable[[Any, Map-
ping[KT, VT_co]], bool] = <UNSET>, *, name=None, reschedule=None, endured=None)
→ graphtik.netop.NetworkOperation

Return a copy with a network pruned for the given needs & provides.

Parameters

• outputs – Will be stored and applied on the next compute() or compile(). If not
given, the value of this instance is conveyed to the clone.

• predicate – Will be stored and applied on the next compute() or compile(). If
not given, the value of this instance is conveyed to the clone.

• name – the name for the new netop:

– if None, the same name is kept;

– if True, a distinct name is devised:

<old-name>-<uid>

– otherwise, the given name is applied.

• reschedule – applies reschedule to all contained operations

• endured – applies endurance to all contained operations

Returns A narrowed netop clone, which MIGHT be empty!*

Raises ValueError –

• If outputs asked do not exist in network, with msg:

Unknown output nodes: . . .

outputs = None
The outputs names (possibly None) used to compile the plan.

predicate = None
The node predicate is a 2-argument callable(op, node-data) that should return true for nodes to include; if
None, all nodes included.

set_execution_method(method)
Determine how the network will be executed.

Parameters method (str) – If “parallel”, execute graph operations concurrently using a
threadpool.

graphtik.netop.compose(name, op1, *operations, outputs: Union[Collection[T_co], str, None] =
None, reschedule=None, endured=None, merge=False, node_props=None,
method=None)→ graphtik.netop.NetworkOperation

Composes a collection of operations into a single computation graph, obeying the merge property, if set in the
constructor.

Parameters

• name (str) – A optional name for the graph being composed by this object.

• op1 – syntactically force at least 1 operation

1.5. API Reference 23

https://docs.python.org/3.8/library/exceptions.html#ValueError
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

• operations – Each argument should be an operation instance created using
operation.

• merge (bool) – If True, this compose object will attempt to merge together operation
instances that represent entire computation graphs. Specifically, if one of the operation
instances passed to this compose object is itself a graph operation created by an earlier
use of compose the sub-operations in that graph are compared against other operations
passed to this compose instance (as well as the sub-operations of other graphs passed to
this compose instance). If any two operations are the same (based on name), then that
operation is computed only once, instead of multiple times (one for each time the operation
appears).

• reschedule – applies reschedule to all contained operations

• endured – applies endurance to all contained operations

• node_props – added as-is into NetworkX graph, to provide for filtering by
NetworkOperation.narrowed().

• method – either parallel or None (default); if "parallel", launches multi-
threading. Set when invoking a composed graph or by NetworkOperation.
set_execution_method().

Returns Returns a special type of operation class, which represents an entire computation graph as
a single operation.

Raises ValueError – If the net‘ cannot produce the asked outputs from the given inputs.

1.5.3 Module: network

Compile & execute network graphs of operations.

exception graphtik.network.AbortedException
Raised from the Network code when abort_run() is called.

graphtik.network._unsatisfied_operations(dag, inputs: Collection[T_co])→ List[T]
Traverse topologically sorted dag to collect un-satisfied operations.

Unsatisfied operations are those suffering from ANY of the following:

• They are missing at least one compulsory need-input. Since the dag is ordered, as soon as we’re on an
operation, all its needs have been accounted, so we can get its satisfaction.

• Their provided outputs are not linked to any data in the dag. An operation might not have any output
link when _prune_graph() has broken them, due to given intermediate inputs.

Parameters

• dag – a graph with broken edges those arriving to existing inputs

• inputs – an iterable of the names of the input values

Returns a list of unsatisfied operations to prune

graphtik.network._execution_configs = <ContextVar name='execution_configs' default={'execution_pool': None, 'abort': c_bool(False), 'skip_evictions': False, 'endure_execution': False, 'marshal_parallel_tasks': False}>
Global configurations affecting execution phase.

graphtik.network.abort_run()
Signal to the 1st running network to stop execution.

graphtik.network.is_abort()
Return True if networks have been signaled to stop execution.

24 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

graphtik.network.is_endure_execution()
Is execution going even of some operations fail?

graphtik.network.is_skip_evictions()
Return True if keeping all intermediate solution values, regardless of asked outputs.

graphtik.network.set_endure_execution(endure)
If endurance set to true, keep executing even of some operations fail.

graphtik.network.set_execution_pool(pool: Optional[Pool])
Set the process-pool for parallel plan executions.

You may have to :also func:set_marshal_parallel_tasks() to resolve pickling issues.

graphtik.network.set_skip_evictions(skipped)
If eviction is true, keep all intermediate solution values, regardless of asked outputs.

graphtik.network._do_task(task)
Un-dill the simpler _OpTask & Dill the results, to pass through pool-processes.

See https://stackoverflow.com/a/24673524/548792

class graphtik.network.Network(*operations, graph=None)
A graph of operations that can compile an execution plan.

needs
the “base”, all data-nodes that are not produced by some operation

provides
the “base”, all data-nodes produced by some operation

__abstractmethods__ = frozenset()

__init__(*operations, graph=None)

Parameters

• operations – to be added in the graph

• graph – if None, create a new.

Raises ValueError – if dupe operation, with msg:

Operations may only be added once, . . .

__module__ = 'graphtik.network'

__repr__()
Return repr(self).

_abc_impl = <_abc_data object>

_append_operation(graph, operation: graphtik.op.Operation)
Adds the given operation and its data requirements to the network graph.

• Invoked during constructor only (immutability).

• Identities are based on the name of the operation, the names of the operation’s needs, and the names
of the data it provides.

Parameters

• graph – the networkx graph to append to

• operation – operation instance to append

1.5. API Reference 25

https://stackoverflow.com/a/24673524/548792
https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

_apply_graph_predicate(graph, predicate)

_build_execution_steps(pruned_dag, inputs: Collection[T_co], outputs: Op-
tional[Collection[T_co]])→ List[T]

Create the list of operation-nodes & instructions evaluating all

operations & instructions needed a) to free memory and b) avoid overwritting given intermediate inputs.

Parameters

• pruned_dag – The original dag, pruned; not broken.

• outputs – outp-names to decide whether to add (and which) evict-instructions

Instances of _EvictInstructions are inserted in steps between operation nodes to reduce the mem-
ory footprint of solutions while the computation is running. An evict-instruction is inserted whenever a
need is not used by any other operation further down the DAG.

_build_pydot(**kws)

_cached_plans = None
Speed up compile() call and avoid a multithreading issue(?) that is occuring when accessing the dag in
networkx.

_prune_graph(inputs: Union[Collection[T_co], str, None], outputs: Union[Collection[T_co], str,
None], predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = None) → Tu-
ple[<sphinx.ext.autodoc.importer._MockObject object at 0x7f40c3332d68>, Collec-
tion[T_co], Collection[T_co], Collection[T_co]]

Determines what graph steps need to run to get to the requested outputs from the provided inputs: -
Eliminate steps that are not on a path arriving to requested outputs; - Eliminate unsatisfied operations:
partial inputs or no outputs needed; - consolidate the list of needs & provides.

Parameters

• inputs – The names of all given inputs.

• outputs – The desired output names. This can also be None, in which case the neces-
sary steps are all graph nodes that are reachable from the provided inputs.

• predicate – the node predicate is a 2-argument callable(op, node-data) that should
return true for nodes to include; if None, all nodes included.

Returns

a 3-tuple with the pruned_dag & the needs/provides resolved based on the given in-
puts/outputs (which might be a subset of all needs/outputs of the returned graph).

Use the returned needs/provides to build a new plan.

Raises ValueError –

• if outputs asked do not exist in network, with msg:

Unknown output nodes: . . .

_topo_sort_nodes(dag)→ List[T]
Topo-sort dag respecting operation-insertion order to break ties.

compile(inputs: Union[Collection[T_co], str, None] = None, outputs: Union[Collection[T_co], str,
None] = None, predicate=None)→ graphtik.network.ExecutionPlan

Create or get from cache an execution-plan for the given inputs/outputs.

See _prune_graph() and _build_execution_steps() for detailed description.

Parameters

26 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

• inputs – A collection with the names of all the given inputs. If None‘, all inputs that
lead to given outputs are assumed. If string, it is converted to a single-element collection.

• outputs – A collection or the name of the output name(s). If None‘, all reachable nodes
from the given inputs are assumed. If string, it is converted to a single-element collection.

• predicate – the node predicate is a 2-argument callable(op, node-data) that should
return true for nodes to include; if None, all nodes included.

Returns the cached or fresh new execution plan

Raises ValueError –

• If outputs asked do not exist in network, with msg:

Unknown output nodes: . . .

• If solution does not contain any operations, with msg:

Unsolvable graph: . . .

• If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs. . .

• If outputs asked cannot be produced by the dag, with msg:

Impossible outputs. . .

class graphtik.network.ExecutionPlan
A pre-compiled list of operation steps that can execute for the given inputs/outputs.

It is the result of the network’s compilation phase.

Note the execution plan’s attributes are on purpose immutable tuples.

net
The parent Network

needs
An iset with the input names needed to exist in order to produce all provides.

provides
An iset with the outputs names produces when all inputs are given.

dag
The regular (not broken) pruned subgraph of net-graph.

steps
The tuple of operation-nodes & instructions needed to evaluate the given inputs & asked outputs, free
memory and avoid overwritting any given intermediate inputs.

evict
when false, keep all inputs & outputs, and skip prefect-evictions check.

__abstractmethods__ = frozenset()

__dict__ = mappingproxy({'__module__': 'graphtik.network', '__doc__': "\n A pre-compiled list of operation steps that can :term:`execute` for the given inputs/outputs.\n\n It is the result of the network's :term:`compilation` phase.\n\n Note the execution plan's attributes are on purpose immutable tuples.\n\n .. attribute:: net\n\n The parent :class:`Network`\n .. attribute:: needs\n\n An :class:`iset` with the input names needed to exist in order to produce all `provides`.\n .. attribute:: provides\n\n An :class:`iset` with the outputs names produces when all `inputs` are given.\n .. attribute:: dag\n\n The regular (not broken) *pruned* subgraph of net-graph.\n .. attribute:: steps\n\n The tuple of operation-nodes & *instructions* needed to evaluate\n the given inputs & asked outputs, free memory and avoid overwritting\n any given intermediate inputs.\n .. attribute:: evict\n\n when false, keep all inputs & outputs, and skip prefect-evictions check.\n ", '_build_pydot': <function ExecutionPlan._build_pydot>, '__repr__': <function ExecutionPlan.__repr__>, 'validate': <function ExecutionPlan.validate>, '_check_if_aborted': <function ExecutionPlan._check_if_aborted>, '_handle_op_task': <function ExecutionPlan._handle_op_task>, '_execute_thread_pool_barrier_method': <function ExecutionPlan._execute_thread_pool_barrier_method>, '_execute_sequential_method': <function ExecutionPlan._execute_sequential_method>, 'execute': <function ExecutionPlan.execute>, '__dict__': <attribute '__dict__' of 'ExecutionPlan' objects>, '__abstractmethods__': frozenset(), '_abc_impl': <_abc_data object>})

__module__ = 'graphtik.network'

__repr__()
Return a nicely formatted representation string

_abc_impl = <_abc_data object>

_build_pydot(**kws)

1.5. API Reference 27

https://docs.python.org/3.8/library/exceptions.html#ValueError

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

_check_if_aborted(executed)

_execute_sequential_method(solution: graphtik.network.Solution)
This method runs the graph one operation at a time in a single thread

Parameters solution – must contain the input values only, gets modified

_execute_thread_pool_barrier_method(solution: graphtik.network.Solution)
This method runs the graph using a parallel pool of thread executors. You may achieve lower total latency
if your graph is sufficiently sub divided into operations using this method.

Parameters solution – must contain the input values only, gets modified

_handle_op_task(op, solution, future)
Un-dill parallel task results (if marshaled), and update solution / handle failure.

execute(named_inputs, outputs=None, *, method=None)→ graphtik.network.Solution

Parameters

• named_inputs – A maping of names –> values that must contain at least the compul-
sory inputs that were specified when the plan was built (but cannot enforce that!). Cloned,
not modified.

• outputs – If not None, they are just checked if possible, based on provides, and
scream if not.

Returns The solution which contains the results of each operation executed +1 for inputs in
separate dictionaries.

Raises ValueError –

• If plan does not contain any operations, with msg:

Unsolvable graph: . . .

• If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs. . .

• If outputs asked cannot be produced by the dag, with msg:

Impossible outputs. . .

validate(inputs: Union[Collection[T_co], str, None], outputs: Union[Collection[T_co], str, None])
Scream on invalid inputs, outputs or no operations in graph.

Raises ValueError –

• If cannot produce any outputs from the given inputs, with msg:

Unsolvable graph: . . .

• If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs. . .

• If outputs asked cannot be produced by the dag, with msg:

Impossible outputs. . .

class graphtik.network._OpTask(op, sol)
Mimic concurrent.futures.Future for sequential execution.

This intermediate class is needed to solve pickiling issue with process executor.

__call__()
Call self as a function.

28 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/exceptions.html#ValueError
https://docs.python.org/3.8/library/exceptions.html#ValueError
https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

__init__(op, sol)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'graphtik.network'

__slots__ = ('op', 'sol', 'result', 'd')

d

get()
Call self as a function.

logname = 'graphtik.network'

marshaled()

op

result

sol

class graphtik.network.Solution(plan, input_values)
Collects outputs from operations, preserving overwrites.

plan
the plan that produced this solution

executed
A dictionary with keys the operations executed, and values their status:

• no key: not executed yet

• value None: execution ok

• value Exception: execution failed

canceled
A sorted set of canceled operations due to upstream failures.

finished
a flag denoting that this instance cannot acccept more results (after the finished() has been invoked)

__init__(plan, input_values)
Initialize a ChainMap by setting maps to the given mappings. If no mappings are provided, a single empty
dictionary is used.

__repr__()
Return repr(self).

failures
a “virtual” property with executed operations that raised an exception

finish()
invoked only once, after all ops have been executed

operation_executed(op, outputs)
Invoked once per operation, with its results.

It will update executed with the operation status and if outputs were partials, it will update canceled
with the unsatisfiead ops downstream of op.

Parameters

• op – the operation that completed ok

1.5. API Reference 29

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

• outputs – The names of the outputs values the op‘ actually produced, which may be a
subset of its provides. Sideffects are not considered.

operation_failed(op, ex)
Invoked once per operation, with its results.

It will update executed with the operation status and the canceled with the unsatisfiead ops down-
stream of op.

overwrites
The data in the solution that exist more than once.

A “virtual” property to a dictionary with keys the names of values that exist more than once, and values,
all those values in a list, ordered:

• before finsihed(), as computed;

• after finsihed(), in reverse.

passed
a “virtual” property with executed operations that had no exception

1.5.4 Module: plot

Plotting of graphtik graphs.

graphtik.plot.build_pydot(graph, steps=None, inputs=None, outputs=None, solution=None,
title=None, node_props=None, edge_props=None, clusters=None, leg-
end_url=’https://graphtik.readthedocs.io/en/latest/_images/GraphtikLegend.svg’)
→ <sphinx.ext.autodoc.importer._MockObject object at
0x7f40c2704da0>

Build a Graphviz out of a Network graph/steps/inputs/outputs and return it.

See Plotter.plot() for the arguments, sample code, and the legend of the plots.

graphtik.plot.default_jupyter_render = {'svg_container_styles': '', 'svg_element_styles': 'width: 100%; height: 300px;', 'svg_pan_zoom_json': '{controlIconsEnabled: true, zoomScaleSensitivity: 0.4, fit: true}'}
A nested dictionary controlling the rendering of graph-plots in Jupyter cells,

as those returned from Plotter.plot() (currently as SVGs). Either modify it in place, or pass another one
in the respective methods.

The following keys are supported.

Parameters

• svg_pan_zoom_json – arguments controlling the rendering of a zoomable SVG in
Jupyter notebooks, as defined in https://github.com/ariutta/svg-pan-zoom#how-to-use if
None, defaults to string (also maps supported):

"{controlIconsEnabled: true, zoomScaleSensitivity: 0.4, fit: true}"

• svg_element_styles – mostly for sizing the zoomable SVG in Jupyter notebooks.
Inspect & experiment on the html page of the notebook with browser tools. if None, defaults
to string (also maps supported):

"width: 100%; height: 300px;"

• svg_container_styles – like svg_element_styles, if None, defaults to empty string
(also maps supported).

30 Chapter 1. Lightweight computation graphs for Python

https://github.com/ariutta/svg-pan-zoom#how-to-use

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

graphtik.plot.legend(filename=None, show=None, jupyter_render: Mapping[KT, VT_co] = None,
arch_url=’https://graphtik.readthedocs.io/en/latest/arch.html’)

Generate a legend for all plots (see Plotter.plot() for args)

Parameters arch_url – the url to the architecture section explaining graphtik glassary.

See render_pydot() for the rest argyments.

graphtik.plot.render_pydot(dot: <sphinx.ext.autodoc.importer._MockObject object at
0x7f40c27041d0>, filename=None, show=False, jupyter_render:
str = None)

Plot a Graphviz dot in a matplotlib, in file or return it for Jupyter.

Parameters

• dot – the pre-built Graphviz pydot.Dot instance

• filename (str) – Write diagram into a file. Common extensions are .png .dot .
jpg .jpeg .pdf .svg call plot.supported_plot_formats() for more.

• show – If it evaluates to true, opens the diagram in a matplotlib window. If it equals -1, it
returns the image but does not open the Window.

• jupyter_render – a nested dictionary controlling the rendering of graph-plots in
Jupyter cells. If None, defaults to default_jupyter_render (you may modify those
in place and they will apply for all future calls).

You may increase the height of the SVG cell output with something like this:

netop.plot(jupyter_render={"svg_element_styles": "height: 600px;
→˓width: 100%"})

Returns the matplotlib image if show=-1, or the dot.

See Plotter.plot() for sample code.

graphtik.plot.supported_plot_formats()→ List[str]
return automatically all pydot extensions

1.5.5 Module: base

Generic or specific utilities

graphtik.base.NO_RESULT = <object object>
When an operation function returns this special value, it implies operation has no result at all, (otherwise, it
would have been a single result, None).‘

class graphtik.base.Plotter
Classes wishing to plot their graphs should inherit this and . . .

implement property plot to return a “partial” callable that somehow ends up calling plot.
render_pydot() with the graph or any other args binded appropriately. The purpose is to avoid copying
this function & documentation here around.

plot(filename=None, show=False, jupyter_render: Union[None, Mapping[KT, VT_co], str] = None,
**kws)

Entry-point for plotting ready made operation graphs.

Parameters

• filename (str) – Write diagram into a file. Common extensions are .png .dot
.jpg .jpeg .pdf .svg call plot.supported_plot_formats() for more.

1.5. API Reference 31

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

• show – If it evaluates to true, opens the diagram in a matplotlib window. If it equals -1, it
plots but does not open the Window.

• inputs – an optional name list, any nodes in there are plotted as a “house”

• outputs – an optional name list, any nodes in there are plotted as an “inverted-house”

• solution – an optional dict with values to annotate nodes, drawn “filled” (currently
content not shown, but node drawn as “filled”). It extracts more infos from a Solution
instance, such as, if solution has an executed attribute, operations contained in it are
drawn as “filled”.

• title – an optional string to display at the bottom of the graph

• node_props – an optional nested dict of Grapvhiz attributes for certain nodes

• edge_props – an optional nested dict of Grapvhiz attributes for certain edges

• clusters – an optional mapping of nodes –> cluster-names, to group them

• jupyter_render – a nested dictionary controlling the rendering of graph-plots in
Jupyter cells, if None, defaults to jupyter_render (you may modify it in place and
apply for all future calls).

• legend_url – a URL to the graphtik legend; if it evaluates to false, none is added.

Returns

a pydot.Dot instance (for for API reference visit: https://pydotplus.readthedocs.io/reference.
html#pydotplus.graphviz.Dot)

Tip: The pydot.Dot instance returned is rendered directly in Jupyter/IPython notebooks
as SVG images.

You may increase the height of the SVG cell output with something like this:

netop.plot(jupyter_render={"svg_element_styles": "height: 600px;
→˓width: 100%"})

Check default_jupyter_render for defaults.

Note that the graph argument is absent - Each Plotter provides its own graph internally; use directly
render_pydot() to provide a different graph.

NODES:

oval function

egg subgraph operation

house given input

inversed-house asked output

polygon given both as input & asked as output (what?)

square intermediate data, neither given nor asked.

red frame evict-instruction, to free up memory.

filled data node has a value in solution OR function has been executed.

thick frame function/data node in execution steps.

32 Chapter 1. Lightweight computation graphs for Python

https://pypi.org/project/pydot/
https://pydotplus.readthedocs.io/reference.html#pydotplus.graphviz.Dot
https://pydotplus.readthedocs.io/reference.html#pydotplus.graphviz.Dot

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

ARROWS

solid black arrows dependencies (source-data need-ed by target-operations, sources-operations provides
target-data)

dashed black arrows optional needs

blue arrows sideffect needs/provides

wheat arrows broken dependency (provide) during pruning

green-dotted arrows execution steps labeled in succession

To generate the legend, see legend().

Sample code:

>>> from graphtik import compose, operation
>>> from graphtik.modifiers import optional
>>> from operator import add

>>> netop = compose("netop",
... operation(name="add", needs=["a", "b1"], provides=["ab1"])(add),
... operation(name="sub", needs=["a", optional("b2")], provides=["ab2
→˓"])(lambda a, b=1: a-b),
... operation(name="abb", needs=["ab1", "ab2"], provides=["asked"])(add),
...)

>>> netop.plot(show=True); # plot just the graph in a
→˓matplotlib window # doctest: +SKIP
>>> inputs = {'a': 1, 'b1': 2}
>>> solution = netop(**inputs) # now plots will include the
→˓execution-plan

>>> netop.plot('plot1.svg', inputs=inputs, outputs=['asked', 'b1'],
→˓solution=solution); # doctest: +SKIP
>>> dot = netop.plot(solution=solution); # just get the `pydoit.Dot` object,
→˓ renderable in Jupyter
>>> print(dot)
digraph G {

URL="https://graphtik.readthedocs.io/en/latest/_images/GraphtikLegend.svg
→˓";

fontname=italic;
label=netop;
a [fillcolor=wheat, shape=invhouse, style=filled, tooltip=1];

...

class graphtik.base.Token(*args)

hashid

graphtik.base.aslist(i, argname, allowed_types=<class ’list’>)
Utility to accept singular strings as lists, and None –> [].

graphtik.base.astuple(i, argname, allowed_types=<class ’tuple’>)

graphtik.base.jetsam(ex, locs, *salvage_vars, annotation=’jetsam’, **salvage_mappings)
Annotate exception with salvaged values from locals() and raise!

Parameters

1.5. API Reference 33

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

• ex – the exception to annotate

• locs – locals() from the context-manager’s block containing vars to be salvaged in
case of exception

ATTENTION: wrapped function must finally call locals(), because locals dictionary
only reflects local-var changes after call.

• annotation – the name of the attribute to attach on the exception

• salvage_vars – local variable names to save as is in the salvaged annotations dictionary.

• salvage_mappings – a mapping of destination-annotation-keys –> source-locals-keys;
if a source is callable, the value to salvage is retrieved by calling value(locs). They
take precendance over‘salvae_vars‘.

Raises any exception raised by the wrapped function, annotated with values assigned as atrributes
on this context-manager

• Any attrributes attached on this manager are attached as a new dict on the raised exception as new jetsam
attrribute with a dict as value.

• If the exception is already annotated, any new items are inserted, but existing ones are preserved.

Example:

Call it with managed-block’s locals() and tell which of them to salvage in case of errors:

try:
a = 1
b = 2
raise Exception()

exception Exception as ex:
jetsam(ex, locals(), "a", b="salvaged_b", c_var="c")
raise

And then from a REPL:

import sys
sys.last_value.jetsam
{'a': 1, 'salvaged_b': 2, "c_var": None}

** Reason:**

Graphs may become arbitrary deep. Debugging such graphs is notoriously hard.

The purpose is not to require a debugger-session to inspect the root-causes (without precluding one).

Naively salvaging values with a simple try/except block around each function, blocks the debugger from landing
on the real cause of the error - it would land on that block; and that could be many nested levels above it.

1.6 Graphtik Changelog

1.6.1 TODOs

See #1.

34 Chapter 1. Lightweight computation graphs for Python

https://github.com/pygraphkit/graphtik/issues/1

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

1.6.2 GitHub Releases

https://github.com/pygraphkit/graphtik/releases

1.6.3 Changelog

v4.4.1 (22 Dec 2019, @ankostis): bugfix debug print

• fix(net): had forgotten a debug-print on every operation call.

• doc(arch): explain parallel & the need for marshalling with process pools.

v4.4.0 (21 Dec 2019, @ankostis): RESCHEDULE for PARTIAL Outputs, on a per op basis

• [x] dynamic Reschedule after operations with partial outputs execute.

• [x] raise after jetsam.

• [x] plots link to legend.

• [x] refact netop

• [x] endurance per op.

• [x] endurance/reschedule for all netop ops.

• [x] merge _Rescheduler into Solution.

• [x] keep order of outputs in Solution even for parallels.

• [x] keep solution layers ordered also for parallel.

• [x] require user to create & enter pools.

• [x] FIX pickling THREAD POOL –>Proccess.

Details

• FIX(NET): keep Solution’s insertion order also for PARALLEL executions.

• FEAT(NET, OP): reschedule operations with partial outputs; they must have FunctionalOperation.
reschedule set to true, or else they will fail.

• FEAT(OP, netop): specify endurance/reschedule on a per operation basis, or collectively for all operations
grouped under some netop.

• REFACT(NETOP):

– feat(netop): new method NetworkOperation.compile(), delegating to same-named method of
network.

– drop(net): method Net.narrowed(); remember netop.narrowed(outputs+predicate) and apply them
on netop.compute() & netop.compile().

* PROS: cache narrowed plans.

* CONS: cannot review network, must review plan of (new) netop.compile().

– drop(netop): inputs args in narrowed() didn’t make much sense, leftover from “unvarying netops”; but
existi ni netop.compile().

1.6. Graphtik Changelog 35

https://github.com/pygraphkit/graphtik/releases

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

– refact(netop): move net-assembly from compose() –> NetOp cstor; now resched-
ule/endured/merge/method args in cstor.

• NET,OP,TCs: FIX PARALLEL POOL CONCURRNECY

– Network:

* feat: +marshal +_OpTask

* refact: plan._call_op –> _handle_op_task

* enh: Make abort run variable a shared-memory Value.

– REFACT(OP,.TC): not a namedtuple, breaks pickling.

– ENH(pool): Pool

– FIX: compare Tokens with is –> ==, or else, it won’t work for sub-processes.

– TEST: x MULTIPLE TESTS

* +4 tags: parallel, thread, proc, marshal.

* many uses of exemethod.

• FIX(build): PyPi README check did not detect forbidden raw directives, and travis auto-depoyments were
failing.

• doc(arch): more terms.

v4.3.0 (16 Dec 2019, @ankostis): Aliases

• FEAT(OP): support “aliases” of provides, to avoid trivial pipe-through operations, just to rename & match
operations.

v4.2.0 (16 Dec 2019, @ankostis): ENDURED Execution

• FEAT(NET): when set_endure_execution() configuration is set to true, a netop will keep on calculating
solution, skipping any operations downstream from failed ones. The solution eventually collects all failures in
Solution.failures.

• ENH(DOC,plot): Links in Legend and Architecture Workflow SVGs now work, and delegate to architecture
terms.

• ENH(plot): mark overwrites, failed & canceled in repr() (see endurance).

• refact(conf): fully rename confguration opetion skip_evictions.

• REFACT(jetsam): raise after jetsam in situ, better for Readers & Linters.

• enh(net): improve logging.

v4.1.0 (13 Dec 2019, @ankostis): ChainMap Solution for Rewrites, stable TOPOLOGICAL sort

• FIX(NET): TOPOLOGICALLY-sort now break ties respecting operations insertion order.

• ENH(NET): new Solution class to collect all computation values, based on a collections.ChainMap
to distinguish outputs per operation executed:

– ENH(NETOP): compute() return Solution, consolidating:

* overwrites,

36 Chapter 1. Lightweight computation graphs for Python

https://docs.python.org/3.8/library/collections.html#collections.ChainMap

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

* executed operations, and

* the generating plan.

– drop(net): _PinInstruction class is not needed.

– drop(netop): overwrites_collector parameter; now in Solution.overwrites().

– ENH(plot): Solution is also a Plotter; e.g. use sol.plot(...)`.

• DROP(plot): executed arg from plotting; now embeded in solution.

• ENH(PLOT.jupyter,doc): allow to set jupyter graph-styling selectively; fix instructions for jupyter cell-resizing.

• fix(plan): time-keeping worked only for sequential execution, not parallel. Refactor it to happen centrally.

• enh(NET,.TC): Add PREDICATE argument also for compile().

• FEAT(DOC): add GLOSSARY as new Architecture section, linked from API HEADERS.

v4.0.1 (12 Dec 2019, @ankostis): bugfix

• FIX(plan): plan.repr() was failing on empty plans.

• fix(site): minor badge fix & landing diagram.

v4.0.0 (11 Dec 2019, @ankostis): NESTED merge, revert v3.x Unvarying, immutable OPs, “color”
nodes

• BREAK/ENH(NETOP): MERGE NESTED NetOps by collecting all their operations in a single Network; now
children netops are not pruned in case some of their needs are unsatisfied.

– feat(op): support multiple nesting under other netops.

• BREAK(NETOP): REVERT Unvarying NetOps+base-plan, and narrow Networks instead; netops were too
rigid, code was cumbersome, and could not really pinpoint the narrowed needs always correctly (e.g. when
they were also provides).

– A netop always narrows its net based on given inputs/outputs. This means that the net might be a subset
of the one constructed out of the given operations. If you want all nodes, don’t specify needs/provides.

– drop 3 ExecutionPlan attributes: plan, needs, plan

– drop recompile flag in Network.compute().

– feat(net): new method Network.narrowed() clones and narrows.

– Network() cstor accepts a (cloned) graph to support narrowed() methods.

• BREAK/REFACT(OP): simplify hierarchy, make Operation fully abstract, without name or requirements.

– enh: make FunctionalOperation IMMUTABLE, by inheriting from class:.namedtuple.

• refact(net): consider as netop needs also intermediate data nodes.

• FEAT(#1, net, netop): support prunning based on arbitrary operation attributes (e.g. assign “colors” to nodes
and solve a subset each time).

• enh(netop): repr() now counts number of contained operations.

• refact(netop): rename netop.narrow() --> narrowed()

• drop(netop): don’t topologically-sort sub-networks before merging them; might change some results, but gives
controll back to the user to define nets.

1.6. Graphtik Changelog 37

https://github.com/pygraphkit/graphtik/issues/1

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

v3.1.0 (6 Dec 2019, @ankostis): cooler prune()

• break/refact(NET): scream on plan.execute() (not net.prune()) so as calmly solve needs vs provides,
based on the given inputs/outputs.

• FIX(ot): was failing when plotting graphs with ops without fn set.

• enh(net): minor fixes on assertions.

v3.0.0 (2 Dec 2019, @ankostis): UNVARYING NetOperations, narrowed, API refact

• NetworkOperations:

– BREAK(NET): RAISE if the graph is UNSOLVABLE for the given needs & provides! (see “raises” list
of compute()).

– BREAK: NetworkOperation.__call__() accepts solution as keyword-args, to mimic API of
Operation.__call__(). outputs keyword has been dropped.

Tip: Use NetworkOperation.compute() when you ask different outputs, or set the recompile
flag if just different inputs are given.

Read the next change-items for the new behavior of the compute() method.

– UNVARYING NetOperations:

* BREAK: calling method NetworkOperation.compute() with a single argument is now UN-
VARYING, meaning that all needs are demaned, and hence, all provides are produced, unless the
recompile flag is true or outputs asked.

* BREAK: net-operations behave like regular operations when nested inside another netop, and always
produce all their provides, or scream if less inputs than needs are given.

* ENH: a newly created or cloned netop can be narrowed() to specific needs & provides, so as not
needing to pass outputs on every call to compute().

* feat: implemented based on the new “narrowed” NetworkOperation.plan attribute.

– FIX: netop needs are not all optional by default; optionality applied only if all underlying operations have
a certain need as optional.

– FEAT: support function **args with 2 new modifiers vararg & varargs, acting like optional
(but without feeding into underlying functions like keywords).

– BREAK(yahoo#12): simplify compose API by turning it from class –> function; all args and operations
are now given in a single compose() call.

– REFACT(net, netop): make Network IMMUTABLE by appending all operations together, in
NetworkOperation constructor.

– ENH(net): public-size _prune_graph() –> Network.prune()`()which can be used to interogate
needs & provides for a given graph. It accepts None inputs & outputs to auto-derrive them.

• FIX(SITE): autodocs API chapter were not generated in at all, due to import errors, fixed by using
autodoc_mock_imports on networkx, pydot & boltons libs.

• enh(op): polite error-,msg when calling an operation with missing needs (instead of an abrupt KeyError).

• FEAT(CI): test also on Python-3.8

38 Chapter 1. Lightweight computation graphs for Python

https://github.com/yahoo/graphkit/issues/12
http://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html#confval-autodoc_mock_imports

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

v2.3.0 (24 Nov 2019, @ankostis): Zoomable SVGs & more op jobs

• FEAT(plot): render Zoomable SVGs in jupyter(lab) notebooks.

• break(netop): rename execution-method "sequential" --> None.

• break(netop): move overwrites_collector & method args from netop.__call__() –> cstor

• refact(netop): convert remaining **kwargs into named args, tighten up API.

v2.2.0 (20 Nov 2019, @ankostis): enhance OPERATIONS & restruct their modules

• REFACT(src): split module nodes.py –> op.py + netop.py and move Operation from base.py –>
op.py, in order to break cycle of base(op) <– net <– netop, and keep utils only in base.py.

• ENH(op): allow Operations WITHOUT any NEEDS.

• ENH(op): allow Operation FUNCTIONS to return directly Dictionaries.

• ENH(op): validate function Results against operation provides; jetsam now includes results variables:
results_fn & results_op.

• BREAK(op): drop unused Operation._after_init() pickle-hook; use dill instead.

• refact(op): convert Operation._validate() into a function, to be called by clients wishing to automate
operation construction.

• refact(op): replace **kwargs with named-args in class:FunctionalOperation, because it allowed too wide
args, and offered no help to the user.

• REFACT(configs): privatize network._execution_configs; expose more config-methods from base
package.

v2.1.1 (12 Nov 2019, @ankostis): global configs

• BREAK: drop Python-3.6 compatibility.

• FEAT: Use (possibly multiple) global configurations for all networks, stored in a contextvars.
ContextVar.

• ENH/BREAK: Use a (possibly) single execution_pool in global-configs.

• feat: add abort flag in global-configs.

• feat: add skip_evictions flag in global-configs.

v2.1.0 (20 Oct 2019, @ankostis): DROP BW-compatible, Restruct modules/API, Plan perfect evic-
tions

The first non pre-release for 2.x train.

• BRAKE API: DROP Operation’s params - use funtools.partial() instead.

• BRAKE API: DROP Backward-Compatible Data & Operation classes,

• BRAKE: DROP Pickle workarounds - expected to use dill instead.

• break(jetsam): drop “graphtik_‘ prefix from annotated attribute

• ENH(op): now operation() supported the “builder pattern” with operation.withset().

1.6. Graphtik Changelog 39

https://docs.python.org/3.8/library/contextvars.html#contextvars.ContextVar
https://docs.python.org/3.8/library/contextvars.html#contextvars.ContextVar

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

• REFACT: renamed internal package functional –> nodes and moved classes around, to break cycles easier,
(base works as suppposed to), not to import early everything, but to fail plot early if pydot dependency
missing.

• REFACT: move PLAN and compute() up, from Network --> NetworkOperation.

• ENH(NET): new PLAN BULDING algorithm produces PERFECT EVICTIONS, that is, it gradually eliminates
from the solution all non-asked outputs.

– enh: pruning now cleans isolated data.

– enh: eviction-instructions are inserted due to two different conditions: once for unneeded data in the past,
and another for unused produced data (those not belonging typo the pruned dag).

– enh: discard immediately irrelevant inputs.

• ENH(net): changed results, now unrelated inputs are not included in solution.

• refact(sideffect): store them as node-attributes in DAG, fix their combination with pinning & eviction.

• fix(parallel): eviction was not working due to a typo 65 commits back!

v2.0.0b1 (15 Oct 2019, @ankostis): Rebranded as Graphtik for Python 3.6+

Continuation of yahoo#30 as yahoo#31, containing review-fixes in huyng/graphkit#1.

Network

• FIX: multithreaded operations were failing due to shared ExecutionPlan.executed.

• FIX: prunning sometimes were inserting plan string in DAG. (not _DataNode).

• ENH: heavily reinforced exception annotations (“jetsam”):

– FIX: (8f3ec3a) outer graphs/ops do not override the inner cause.

– ENH: retrofitted exception-annotations as a single dictionary, to print it in one shot (8f3ec3a & 8d0de1f)

– enh: more data in a dictionary

– TCs: Add thorough TCs (8f3ec3a & b8063e5).

• REFACT: rename Delete–>‘Evict‘, removed Placeholder from nadanodes, privatize node-classes.

• ENH: collect “jetsam” on errors and annotate exceptions with them.

• ENH(sideffects): make them always DIFFERENT from regular DATA, to allow to co-exist.

• fix(sideffects): typo in add_op() were mixing needs/provides.

• enh: accept a single string as outputs when running graphs.

Testing & other code:

• TCs: pytest now checks sphinx-site builds without any warnings.

• Established chores with build services:

– Travis (and auto-deploy to PyPi),

– codecov

– ReadTheDocs

40 Chapter 1. Lightweight computation graphs for Python

https://github.com/yahoo/graphkit/issues/30
https://github.com/yahoo/graphkit/issues/31

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

v1.3.0 (Oct 2019, @ankostis): NEVER RELEASED: new DAG solver, better plotting & “sideffect”

Kept external API (hopefully) the same, but revamped pruning algorithm and refactored network compute/compile
structure, so results may change; significantly enhanced plotting. The only new feature actually is the sideffect`
modifier.

Network:

• FIX(yahoo#18, yahoo#26, yahoo#29, yahoo#17, yahoo#20): Revamped DAG SOLVER to fix bad pruning
described in yahoo#24 & yahoo#25

Pruning now works by breaking incoming provide-links to any given intermedediate inputs dropping operations
with partial inputs or without outputs.

The end result is that operations in the graph that do not have all inputs satisfied, they are skipped (in v1.2.4 they
crashed).

Also started annotating edges with optional/sideffects, to make proper use of the underlying networkx graph.

• REFACT(yahoo#21, yahoo#29): Refactored Network and introduced ExecutionPlan to keep compilation
results (the old steps list, plus input/output names).

Moved also the check for when to evict a value, from running the execution-plan, to whenbuilding it; thus,
execute methods don’t need outputs anymore.

• ENH(yahoo#26): “Pin* input values that may be overriten by calculated ones.

This required the introduction of the new _PinInstruction in the execution plan.

• FIX(yahoo#23, yahoo#22-2.4.3): Keep consistent order of networkx.DiGraph and sets, to generate deter-
ministic solutions.

Unfortunately, it non-determinism has not been fixed in < PY3.5, just reduced the frequency of spurious failures,
caused by unstable dicts, and the use of subgraphs.

• enh: Mark outputs produced by NetworkOperation’s needs as optional. TODO: subgraph network-
operations would not be fully functional until “optional outpus” are dealt with (see yahoo#22-2.5).

• enh: Annotate operation exceptions with ExecutionPlan to aid debug sessions,

• drop: methods list_layers()/show layers() not needed, repr() is a better replacement.

Plotting:

• ENH(yahoo#13, yahoo#26, yahoo#29): Now network remembers last plan and uses that to overlay graphs with
the internals of the planing and execution:

– execution-steps & order

– evict & pin instructions

– given inputs & asked outputs

– solution values (just if they are present)

– “optional” needs & broken links during pruning

• REFACT: Move all API doc on plotting in a single module, splitted in 2 phases, build DOT & render DOT

1.6. Graphtik Changelog 41

https://github.com/yahoo/graphkit/issues/18
https://github.com/yahoo/graphkit/issues/26
https://github.com/yahoo/graphkit/issues/29
https://github.com/yahoo/graphkit/issues/17
https://github.com/yahoo/graphkit/issues/20
https://github.com/yahoo/graphkit/issues/24
https://github.com/yahoo/graphkit/issues/25
https://github.com/yahoo/graphkit/issues/21
https://github.com/yahoo/graphkit/issues/29
https://github.com/yahoo/graphkit/issues/26
https://github.com/yahoo/graphkit/issues/23
https://github.com/yahoo/graphkit/issues/22
https://travis-ci.org/yahoo/graphkit/builds/594729787
https://github.com/yahoo/graphkit/issues/22
https://github.com/yahoo/graphkit/issues/13
https://github.com/yahoo/graphkit/issues/26
https://github.com/yahoo/graphkit/issues/29

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

• FIX(yahoo#13): bring plot writing into files up-to-date from PY2; do not create plot-file if given file-extension
is not supported.

• FEAT: path pydot library to support rendering in Jupyter notebooks.

Testing & other code:

• Increased coverage from 77% –> 90%.

• ENH(yahoo#28): use pytest, to facilitate TCs parametrization.

• ENH(yahoo#30): Doctest all code; enabled many assertions that were just print-outs in v1.2.4.

• FIX: operation.__repr__() was crashing when not all arguments had been set - a condition frequtnly
met during debugging session or failed TCs (inspired by @syamajala’s 309338340).

• enh: Sped up parallel/multihtread TCs by reducing delays & repetitions.

Tip: You need pytest -m slow to run those slow tests.

Chore & Docs:

• FEAT: add changelog in CHANGES.rst file, containing flowcharts to compare versions v1.2.4 <--> v1.
3..0.

• enh: updated site & documentation for all new features, comparing with v1.2.4.

• enh(yahoo#30): added “API reference’ chapter.

• drop(build): sphinx_rtd_theme library is the default theme for Sphinx now.

• enh(build): Add test pip extras.

• sound: https://www.youtube.com/watch?v=-527VazA4IQ, https://www.youtube.com/watch?v=8J182LRi8sU&
t=43s

v1.2.4 (Mar 7, 2018)

• Issues in pruning algorithm: yahoo#24, yahoo#25

• Blocking bug in plotting code for Python-3.x.

• Test-cases without assertions (just prints).

1.2.2 (Mar 7, 2018, @huyng): Fixed versioning

Versioning now is manually specified to avoid bug where the version was not being correctly reflected on pip install
deployments

42 Chapter 1. Lightweight computation graphs for Python

https://github.com/yahoo/graphkit/issues/13
https://pypi.org/project/pydot/
https://github.com/yahoo/graphkit/issues/28
https://github.com/yahoo/graphkit/issues/30
https://github.com/yahoo/graphkit/issues/30
https://www.youtube.com/watch?v=-527VazA4IQ
https://www.youtube.com/watch?v=8J182LRi8sU&t=43s
https://www.youtube.com/watch?v=8J182LRi8sU&t=43s
https://github.com/yahoo/graphkit/issues/24
https://github.com/yahoo/graphkit/issues/25

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

1.2.1 (Feb 23, 2018, @huyng): Fixed multi-threading bug and faster compute through caching of
find_necessary_steps

We’ve introduced a cache to avoid computing find_necessary_steps multiple times during each inference call.

This has 2 benefits:

• It reduces computation time of the compute call

• It avoids a subtle multi-threading bug in networkx when accessing the graph from a high number of threads.

1.2.0 (Feb 13, 2018, @huyng)

Added set_execution_method(‘parallel’) for execution of graphs in parallel.

1.1.0 (Nov 9, 2017, @huyng)

Update setup.py

1.0.4 (Nov 3, 2017, @huyng): Networkx 2.0 compatibility

Minor Bug Fixes:

• Compatibility fix for networkx 2.0

• net.times now only stores timing info from the most recent run

1.0.3 (Jan 31, 2017, @huyng): Make plotting dependencies optional

• Merge pull request yahoo#6 from yahoo/plot-optional

• make plotting dependencies optional

1.0.2 (Sep 29, 2016, @pumpikano): Merge pull request yahoo#5 from yahoo/remove-packaging-dep

• Remove ‘packaging’ as dependency

1.0.1 (Aug 24, 2016)

1.0 (Aug 2, 2016, @robwhess)

First public release in PyPi & GitHub.

• Merge pull request yahoo#3 from robwhess/travis-build

• Travis build

1.6. Graphtik Changelog 43

https://github.com/yahoo/graphkit/issues/6
https://github.com/yahoo/graphkit/issues/3

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

44 Chapter 1. Lightweight computation graphs for Python

CHAPTER 2

Quick start

Here’s how to install:

pip install graphtik

OR with dependencies for plotting support (and you need to install Graphviz program separately with your OS tools):

pip install graphtik[plot]

Here’s a Python script with an example Graphtik computation graph that produces multiple outputs (a * b, a - a

* b, and abs(a - a * b) ** 3):

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

Computes |a|^p.
>>> def abspow(a, p):
... c = abs(a) ** p
... return c

Compose the mul, sub, and abspow functions into a computation graph:

>>> graphop = compose("graphop",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
... operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed
→˓"])
... (partial(abspow, p=3))
...)

Run the graph-operation and request all of the outputs:

>>> graphop(**{'a': 2, 'b': 5})
{'a': 2, 'b': 5, 'ab': 10, 'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

45

https://graphviz.org

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

Run the graph-operation and request a subset of the outputs:

>>> solution = graphop.compute({'a': 2, 'b': 5}, outputs=["a_minus_ab"])
>>> solution
{'a_minus_ab': -8}

. . . and plot the results (if in jupyter, no need to create the file):

>>> solution.plot('graphop.svg')

As you can see, any function can be used as an operation in Graphtik, even ones imported from system modules!

46 Chapter 2. Quick start

Python Module Index

g
graphtik.base, 31
graphtik.netop, 21
graphtik.network, 24
graphtik.op, 21
graphtik.plot, 30

47

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

48 Python Module Index

Index

Symbols
_OpTask (class in graphtik.network), 28
__abstractmethods__ (graph-

tik.network.ExecutionPlan attribute), 27
__abstractmethods__ (graphtik.network.Network

attribute), 25
__call__() (graphtik.network._OpTask method), 28
__call__() (graphtik.operation method), 5
__dict__ (graphtik.network.ExecutionPlan attribute),

27
__init__() (graphtik.network.Network method), 25
__init__() (graphtik.network.Solution method), 29
__init__() (graphtik.network._OpTask method), 28
__module__ (graphtik.network.ExecutionPlan at-

tribute), 27
__module__ (graphtik.network.Network attribute), 25
__module__ (graphtik.network._OpTask attribute), 29
__repr__() (graphtik.network.ExecutionPlan

method), 27
__repr__() (graphtik.network.Network method), 25
__repr__() (graphtik.network.Solution method), 29
__slots__ (graphtik.network._OpTask attribute), 29
_abc_impl (graphtik.network.ExecutionPlan at-

tribute), 27
_abc_impl (graphtik.network.Network attribute), 25
_append_operation() (graphtik.network.Network

method), 25
_apply_graph_predicate() (graph-

tik.network.Network method), 25
_build_execution_steps() (graph-

tik.network.Network method), 26
_build_pydot() (graphtik.network.ExecutionPlan

method), 27
_build_pydot() (graphtik.network.Network

method), 26
_cached_plans (graphtik.network.Network at-

tribute), 26
_check_if_aborted() (graph-

tik.network.ExecutionPlan method), 27

_do_task() (in module graphtik.network), 25
_execute_sequential_method() (graph-

tik.network.ExecutionPlan method), 28
_execute_thread_pool_barrier_method()

(graphtik.network.ExecutionPlan method), 28
_execution_configs (in module graphtik.network),

24
_handle_op_task() (graph-

tik.network.ExecutionPlan method), 28
_prune_graph() (graphtik.network.Network

method), 26
_topo_sort_nodes() (graphtik.network.Network

method), 26
_unsatisfied_operations() (in module graph-

tik.network), 24

A
abort_run() (in module graphtik.network), 24
AbortedException, 24
aslist() (in module graphtik.base), 33
astuple() (in module graphtik.base), 33

B
build_pydot() (in module graphtik.plot), 30

C
canceled (graphtik.network.Solution attribute), 29
canceled operation, 20
COMPILATION, 18
compile, 18
compile() (graphtik.netop.NetworkOperation

method), 21
compile() (graphtik.network.Network method), 26
compose, 18
compose() (in module graphtik), 11
compose() (in module graphtik.netop), 23
COMPOSITION, 18
computation, 17
COMPUTE, 17

49

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

compute() (graphtik.netop.NetworkOperation
method), 22

compute() (graphtik.op.Operation method), 21
configurations, 18

D
d (graphtik.network._OpTask attribute), 29
dag, 19
dag (graphtik.network.ExecutionPlan attribute), 27
default_jupyter_render (in module graph-

tik.plot), 30

E
endurance, 20
evict, 19
evict (graphtik.network.ExecutionPlan attribute), 27
eviction, 19
execute, 18
execute() (graphtik.network.ExecutionPlan method),

28
executed (graphtik.network.Solution attribute), 29
EXECUTION, 18
execution dag, 19
execution plan, 19
execution steps, 19
ExecutionPlan (class in graphtik.network), 27

F
failures (graphtik.network.Solution attribute), 29
finish() (graphtik.network.Solution method), 29
finished (graphtik.network.Solution attribute), 29

G
get() (graphtik.network._OpTask method), 29
graph, 19
graphtik.base (module), 31
graphtik.netop (module), 21
graphtik.network (module), 24
graphtik.op (module), 21
graphtik.plot (module), 30

H
hashid (graphtik.base.Token attribute), 33

I
inputs, 20
is_abort() (in module graphtik.network), 24
is_endure_execution() (in module graph-

tik.network), 25
is_skip_evictions() (in module graph-

tik.network), 25

J
jetsam() (in module graphtik.base), 33

L
last_plan (graphtik.netop.NetworkOperation at-

tribute), 22
legend() (in module graphtik.plot), 30
logname (graphtik.network._OpTask attribute), 29

M
marshal, 18
marshaled() (graphtik.network._OpTask method), 29
method (graphtik.netop.NetworkOperation attribute),

22

N
name (graphtik.netop.NetworkOperation attribute), 23
narrowed() (graphtik.netop.NetworkOperation

method), 23
needs, 20
needs (graphtik.network.ExecutionPlan attribute), 27
needs (graphtik.network.Network attribute), 25
net, 19
net (graphtik.network.ExecutionPlan attribute), 27
netop, 20
network, 19
Network (class in graphtik.network), 25
network graph, 19
network operation, 20
NetworkOperation (class in graphtik.netop), 21
NO_RESULT (in module graphtik.base), 31
node predicate, 21

O
op (graphtik.network._OpTask attribute), 29
operation, 20
operation (class in graphtik), 4
Operation (class in graphtik.op), 21
operation_executed() (graphtik.network.Solution

method), 29
operation_failed() (graphtik.network.Solution

method), 30
optional (class in graphtik.modifiers), 8
outputs, 20
outputs (graphtik.netop.NetworkOperation attribute),

23
overwrites, 19
overwrites (graphtik.network.Solution attribute), 30

P
parallel, 18
parallel execution, 18
partial outputs, 20
passed (graphtik.network.Solution attribute), 30
plan, 19
plan (graphtik.network.Solution attribute), 29

50 Index

graphtik Documentation, Release src: 4.4.1, git: v4.4.1

plot() (graphtik.base.Plotter method), 31
Plotter (class in graphtik.base), 31
predicate, 21
predicate (graphtik.netop.NetworkOperation at-

tribute), 23
process pool, 18
provides, 20
provides (graphtik.network.ExecutionPlan attribute),

27
provides (graphtik.network.Network attribute), 25
provides (graphtik.op.FunctionalOperation attribute),

3
prune, 20
pruning, 20

R
real_provides (graphtik.op.FunctionalOperation at-

tribute), 3
render_pydot() (in module graphtik.plot), 31
reparse_operation_data() (in module graph-

tik.op), 21
reschedule, 20
rescheduling, 20
result (graphtik.network._OpTask attribute), 29

S
sequential, 18
set_endure_execution() (in module graph-

tik.network), 25
set_execution_method() (graph-

tik.netop.NetworkOperation method), 23
set_execution_pool() (in module graph-

tik.network), 25
set_skip_evictions() (in module graph-

tik.network), 25
sideffect (class in graphtik.modifiers), 10
sideffects, 20
sol (graphtik.network._OpTask attribute), 29
solution, 19
Solution (class in graphtik.network), 29
steps, 19
steps (graphtik.network.ExecutionPlan attribute), 27
supported_plot_formats() (in module graph-

tik.plot), 31

T
Token (class in graphtik.base), 33

U
unsatisfied operation, 20

V
validate() (graphtik.network.ExecutionPlan

method), 28

vararg (class in graphtik.modifiers), 9
varargs (class in graphtik.modifiers), 10

W
withset() (graphtik.operation method), 6

Index 51

	Lightweight computation graphs for Python
	Operations
	The operation builder factory
	Operations are just functions
	Specifying graph structure: provides and needs
	Instantiating operations
	Modifiers on operation inputs and outputs

	Graph Composition
	The compose factory
	Simple composition of operations
	Running a computation graph
	Adding on to an existing computation graph
	More complicated composition: merging computation graphs

	Plotting and Debugging
	Plotting
	Errors & debugging
	Execution internals

	Architecture
	API Reference
	Module: op
	Module: netop
	Module: network
	Module: plot
	Module: base

	Graphtik Changelog
	TODOs
	GitHub Releases
	Changelog

	Quick start
	Python Module Index
	Index

