

Graphtik

[image: Supported Python versions of latest release in PyPi] [https://pypi.python.org/pypi/graphtik/] [image: Development Status] [https://pypi.python.org/pypi/graphtik/] (src: 5.2.0, git: v5.2.0
, Feb 28, 2020) [image: Latest release in GitHub] [https://github.com/pygraphkit/graphtik/releases] [image: Latest version in PyPI] [https://pypi.python.org/pypi/graphtik/]
[image: Travis continuous integration testing ok? (Linux)] [https://travis-ci.org/pygraphkit/graphtik/builds] [image: ReadTheDocs ok?] [https://graphtik.readthedocs.org] [image: cover-status] [https://codecov.io/gh/pygraphkit/graphtik] [image: Code Style] [https://github.com/ambv/black] [image: Apache License, version 2.0] [https://www.apache.org/licenses/LICENSE-2.0]

[image: Github watchers] [https://github.com/pygraphkit/graphtik] [image: Github stargazers] [https://github.com/pygraphkit/graphtik] [image: Github forks] [https://github.com/pygraphkit/graphtik] [image: Issues count] [https://github.com/pygraphkit/graphtik/issues]

It’s a DAG all the way down!

 1. Operations

1. Operations

At a high level, an operation is a node in a computation graph.
Graphtik uses an Operation class to abstractly represent these computations.
The class specifies the requirements for a function to participate
in a computation graph; those are its input-data needs, and the output-data
it provides.

The FunctionalOperation provides a lightweight wrapper
around an arbitrary function to define those specifications.

	
class graphtik.op.FunctionalOperation(fn: Callable, name, needs: Union[Collection[T_co], str, None] = None, provides: Union[Collection[T_co], str, None] = None, aliases: Mapping[KT, VT_co] = None, *, parents: Tuple = None, rescheduled=None, endured=None, parallel=None, marshalled=None, returns_dict=None, node_props: Mapping[KT, VT_co] = None)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/op.py#L107]

	An operation performing a callable (ie a function, a method, a
lambda).

	
provides[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/op.py]

	
Value names this operation provides (including aliases/sideffects).

	

	
real_provides[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/op.py]

	
Value names the underlying function provides (without aliases, with(!) sideffects).

	FIXME: real_provides not sure what it does with sideffects

Tip

Use operation() builder class to build instances of this class instead.

	
__call__(*args, **kwargs)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/op.py#L514]

	Call self as a function.

	
__init__(fn: Callable, name, needs: Union[Collection[T_co], str, None] = None, provides: Union[Collection[T_co], str, None] = None, aliases: Mapping[KT, VT_co] = None, *, parents: Tuple = None, rescheduled=None, endured=None, parallel=None, marshalled=None, returns_dict=None, node_props: Mapping[KT, VT_co] = None)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/op.py#L123]

	Build a new operation out of some function and its requirements.

	Parameters

	
	name – a name for the operation (e.g. ‘conv1’, ‘sum’, etc..);
it will be prefixed by parents.

	needs – Names of input data objects this operation requires.

	provides – Names of the real output values the underlying function provides
(without aliases, with(!) sideffects)

	aliases – an optional mapping of real provides to additional ones, togetherher
comprising this operations provides.

	parents – a tuple wth the names of the parents, prefixing name,
but also kept for equality/hash check.

	rescheduled – If true, underlying callable may produce a subset of provides,
and the plan must then reschedule after the operation
has executed. In that case, it makes more sense for the callable
to returns_dict.

	endured – If true, even if callable fails, solution will reschedule;
ignored if endurance enabled globally.

	parallel – execute in parallel

	marshalled – If true, operation will be marshalled while computed,
along with its inputs & outputs.
(usefull when run in parallel with a process pool).

	returns_dict – if true, it means the fn returns a dictionary with all provides,
and no further processing is done on them
(i.e. the returned output-values are not zipped with provides)

	node_props – added as-is into NetworkX graph

	
compute(named_inputs, outputs=None) → dict[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/op.py#L426]

	Compute (optional) asked outputs for the given named_inputs.

It is called by Network.
End-users should simply call the operation with named_inputs as kwargs.

	Parameters

	named_inputs – the input values with which to feed the computation.

	Returns list

	Should return a list values representing
the results of running the feed-forward computation on
inputs.

The operation builder factory

There is a better way to instantiate an FunctionalOperation than simply constructing it:
use the operation builder class:

	
class graphtik.operation(fn: Callable = None, *, name=None, needs: Union[Collection[T_co], str, None] = None, provides: Union[Collection[T_co], str, None] = None, aliases: Mapping[KT, VT_co] = None, rescheduled=None, endured=None, parallel=None, marshalled=None, returns_dict=None, node_props: Mapping[KT, VT_co] = None)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik.py#L518]

	A builder for graph-operations wrapping functions.

	Parameters

	
	fn (function) – The function used by this operation. This does not need to be
specified when the operation object is instantiated and can instead
be set via __call__ later.

	name (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – The name of the operation in the computation graph.

	needs – Names of input data objects this operation requires. These should
correspond to the args of fn.

	provides – Names of output data objects this operation provides.
If more than one given, those must be returned in an iterable,
unless returns_dict is true, in which case a dictionary with as many
elements must be returned

	aliases – an optional mapping of provides to additional ones

	rescheduled – If true, underlying callable may produce a subset of provides,
and the plan must then reschedule after the operation
has executed. In that case, it makes more sense for the callable
to returns_dict.

	endured – If true, even if callable fails, solution will reschedule.
ignored if endurance enabled globally.

	parallel – execute in parallel

	marshalled – If true, operation will be marshalled while computed, along with its inputs & outputs.
(usefull when run in parallel with a process pool).

	returns_dict – if true, it means the fn returns dictionary with all provides,
and no further processing is done on them
(i.e. the returned output-values are not zipped with provides)

	node_props – added as-is into NetworkX graph

	Returns

	when called, it returns a FunctionalOperation

Example:

This is an example of its use, based on the “builder pattern”:

>>> from graphtik import operation

>>> opb = operation(name='add_op')
>>> opb.withset(needs=['a', 'b'])
operation(name='add_op', needs=['a', 'b'], provides=[], fn=None)
>>> opb.withset(provides='SUM', fn=sum)
operation(name='add_op', needs=['a', 'b'], provides=['SUM'], fn='sum')

You may keep calling withset() till you invoke a final __call__()
on the builder; then you get the actual FunctionalOperation instance:

>>> # Create `Operation` and overwrite function at the last moment.
>>> opb(sum)
FunctionalOperation(name='add_op', needs=['a', 'b'], provides=['SUM'], fn='sum')

Tip

Remember to call once more the builder class at the end, to get the actual
operation instance.

	
__call__(fn: Callable = None, *, name=None, needs: Union[Collection[T_co], str, None] = None, provides: Union[Collection[T_co], str, None] = None, aliases: Mapping[KT, VT_co] = None, rescheduled=None, endured=None, parallel=None, marshalled=None, returns_dict=None, node_props: Mapping[KT, VT_co] = None) → graphtik.op.FunctionalOperation[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik.py#L644]

	This enables operation to act as a decorator or as a functional
operation, for example:

@operator(name='myadd1', needs=['a', 'b'], provides=['c'])
def myadd(a, b):
 return a + b

or:

def myadd(a, b):
 return a + b
operator(name='myadd1', needs=['a', 'b'], provides=['c'])(myadd)

	Parameters

	fn (function) – The function to be used by this operation.

	Returns

	Returns an operation class that can be called as a function or
composed into a computation graph.

	
withset(*, fn: Callable = None, name=None, needs: Union[Collection[T_co], str, None] = None, provides: Union[Collection[T_co], str, None] = None, aliases: Mapping[KT, VT_co] = None, rescheduled=None, endured=None, parallel=None, marshalled=None, returns_dict=None, node_props: Mapping[KT, VT_co] = None) → graphtik.op.operation[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik.py#L603]

	See operation for arguments here.

Operations are just functions

At the heart of each operation is just a function, any arbitrary function.
Indeed, you can instantiate an operation with a function and then call it
just like the original function, e.g.:

>>> from operator import add
>>> from graphtik import operation

>>> add_op = operation(name='add_op', needs=['a', 'b'], provides=['a_plus_b'])(add)

>>> add_op(3, 4) == add(3, 4)
True

Specifying graph structure: provides and needs

Of course, each operation is more than just a function.
It is a node in a computation graph, depending on other nodes in the graph for input data and
supplying output data that may be used by other nodes in the graph (or as a graph output).
This graph structure is specified via the provides and needs arguments
to the operation constructor. Specifically:

	provides: this argument names the outputs (i.e. the returned values) of a given operation.
If multiple outputs are specified by provides, then the return value of the function
comprising the operation must return an iterable.

	needs: this argument names data that is needed as input by a given operation.
Each piece of data named in needs may either be provided by another operation
in the same graph (i.e. specified in the provides argument of that operation),
or it may be specified as a named input to a graph computation
(more on graph computations here).

When many operations are composed into a computation graph (see Graph Composition for more on that),
Graphtik matches up the values in their needs and provides to form the edges of that graph.

Let’s look again at the operations from the script in Quick start, for example:

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

>>> # Computes |a|^p.
>>> def abspow(a, p):
... c = abs(a) ** p
... return c

>>> # Compose the mul, sub, and abspow operations into a computation graph.
>>> graphop = compose("graphop",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
... operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed"])
... (partial(abspow, p=3))
...)

Tip

Notice the use of functools.partial() [https://docs.python.org/3.8/library/functools.html#functools.partial] to set parameter p to a constant value.

The needs and provides arguments to the operations in this script define
a computation graph that looks like this (where the oval are operations,
squares/houses are data):

[image: _images/barebone_3ops.svg]
Tip

See Plotting on how to make diagrams like this.

Instantiating operations

There are several ways to instantiate an operation, each of which might be more suitable for different scenarios.

Decorator specification

If you are defining your computation graph and the functions that comprise it all in the same script, the decorator specification of operation instances might be particularly useful, as it allows you to assign computation graph structure to functions as they are defined. Here’s an example:

>>> from graphtik import operation, compose

>>> @operation(name='foo_op', needs=['a', 'b', 'c'], provides='foo')
... def foo(a, b, c):
... return c * (a + b)

>>> graphop = compose('foo_graph', foo)

Functional specification

If the functions underlying your computation graph operations are defined elsewhere than the script in which your graph itself is defined (e.g. they are defined in another module, or they are system functions), you can use the functional specification of operation instances:

>>> from operator import add, mul
>>> from graphtik import operation, compose

>>> add_op = operation(name='add_op', needs=['a', 'b'], provides='sum')(add)
>>> mul_op = operation(name='mul_op', needs=['c', 'sum'], provides='product')(mul)

>>> graphop = compose('add_mul_graph', add_op, mul_op)

The functional specification is also useful if you want to create multiple operation
instances from the same function, perhaps with different parameter values, e.g.:

>>> from functools import partial

>>> def mypow(a, p=2):
... return a ** p

>>> pow_op1 = operation(name='pow_op1', needs=['a'], provides='a_squared')(mypow)
>>> pow_op2 = operation(name='pow_op2', needs=['a'], provides='a_cubed')(partial(mypow, p=3))

>>> graphop = compose('two_pows_graph', pow_op1, pow_op2)

A slightly different approach can be used here to accomplish the same effect
by creating an operation “builder pattern”:

>>> def mypow(a, p=2):
... return a ** p

>>> pow_op_factory = operation(mypow, needs=['a'], provides='a_squared')

>>> pow_op1 = pow_op_factory(name='pow_op1')
>>> pow_op2 = pow_op_factory.withset(name='pow_op2', provides='a_cubed')(partial(mypow, p=3))
>>> pow_op3 = pow_op_factory(lambda a: 1, name='pow_op3')

>>> graphop = compose('two_pows_graph', pow_op1, pow_op2, pow_op3)
>>> graphop(a=2)
{'a': 2, 'a_squared': 4, 'a_cubed': 1}

Note

You cannot call again the factory to overwrite the function,
you have to use either the fn= keyword with withset() method or
call once more.

Modifiers on operation needs and provides

Modifiers change the behavior of specific needs or provides.

The needs and provides annotated with modifiers designate, for instance,
optional function arguments, or “ghost” sideffects.

	
class graphtik.modifiers.arg[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/modifiers.py#L12]

	Annotate a needs to map from its name in the inputs to a different argument-name.

	Parameters

	fn_arg – The argument-name corresponding to this named-input.

Note

This extra mapping argument is needed either for optionals or
for functions with keywords-only arguments (like def func(*, foo, bar): ...),
since inputs` are normally fed into functions by-position, not by-name.

Example:

In case the name of the function arguments is different from the name in the
inputs (or just because the name in the inputs is not a valid argument-name),
you may map it with the 2nd argument of arg (or optional):

>>> from graphtik import operation, compose, arg

>>> def myadd(a, *, b):
... return a + b

>>> graph = compose('mygraph',
... operation(name='myadd',
... needs=['a', arg("name-in-inputs", "b")],
... provides="sum")(myadd)
...)
>>> graph
NetworkOperation('mygraph', needs=['a', 'name-in-inputs'], provides=['sum'], x1 ops:
 +--FunctionalOperation(name='myadd',
 needs=['a',
 arg('name-in-inputs'-->'b')],
 provides=['sum'],
 fn='myadd'))
>>> graph.compute({"a": 5, "name-in-inputs": 4})['sum']
9

	
class graphtik.modifiers.optional[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/modifiers.py#L66]

	Annotate optionals needs corresponding to defaulted op-function arguments, …

received only if present in the inputs (when operation is invocated).
The value of an optional is passed as a keyword argument to the underlying function.

Example:

>>> from graphtik import operation, compose, optional

>>> def myadd(a, b=0):
... return a + b

Annotate b as optional argument (and notice it’s default value 0):

>>> graph = compose('mygraph',
... operation(name='myadd',
... needs=["a", optional("b")],
... provides="sum")(myadd)
...)
>>> graph
NetworkOperation('mygraph',
 needs=['a', optional('b')],
 provides=['sum'],
 x1 ops:
...

The graph works both with and without c provided in the inputs:

>>> graph(a=5, b=4)['sum']
9
>>> graph(a=5)
{'a': 5, 'sum': 5}

	
class graphtik.modifiers.sideffect[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/modifiers.py#L217]

	sideffects dependencies participates in the graph but not exchanged with functions.

Both needs & provides may be designated as sideffects using this modifier.
They work as usual while solving the graph (compilation) but
they do not interact with the operation’s function; specifically:

	input sideffects must exist in the inputs for an operation to kick-in;

	input sideffects are NOT fed into the function;

	output sideffects are NOT expected from the function;

	output sideffects are stored in the solution.

Their purpose is to describe operations that modify the internal state of
some of their arguments (“side-effects”).

Example:

A typical use-case is to signify columns required to produce new ones in
pandas dataframes:

>>> from graphtik import operation, compose, sideffect

>>> # Function appending a new dataframe column from two pre-existing ones.
>>> def addcolumns(df):
... df['sum'] = df['a'] + df['b']

Designate a, b & sum column names as an sideffect arguments:

>>> graph = compose('mygraph',
... operation(
... name='addcolumns',
... needs=['df', sideffect('df.b')], # sideffect names can be anything
... provides=[sideffect('df.sum')])(addcolumns)
...)
>>> graph
NetworkOperation('mygraph', needs=['df', 'sideffect(df.b)'],
 provides=['sideffect(df.sum)'], x1 ops:
 +--FunctionalOperation(name='addcolumns', needs=['df', 'sideffect(df.b)'], provides=['sideffect(df.sum)'], fn='addcolumns'))

>>> df = pd.DataFrame({'a': [5, 0], 'b': [2, 1]}) # doctest: +SKIP
>>> graph({'df': df})['df'] # doctest: +SKIP
 a b
0 5 2
1 0 1

We didn’t get the sum column because the b sideffect was unsatisfied.
We have to add its key to the inputs (with any value):

>>> graph({'df': df, sideffect("df.b"): 0})['df'] # doctest: +SKIP
 a b sum
0 5 2 7
1 0 1 1

Note that regular data in needs and provides do not match same-named sideffects.
That is, in the following operation, the prices input is different from
the sideffect(prices) output:

>>> def upd_prices(sales_df, prices):
... sales_df["Prices"] = prices

>>> operation(fn=upd_prices,
... name="upd_prices",
... needs=["sales_df", "price"],
... provides=[sideffect("price")])
operation(name='upd_prices', needs=['sales_df', 'price'],
 provides=['sideffect(price)'], fn='upd_prices')

Note

An operation with sideffects outputs only, have functions that return
no value at all (like the one above). Such operation would still be called for
their side-effects, if requested in outputs.

Tip

You may associate sideffects with other data to convey their relationships,
simply by including their names in the string - in the end, it’s just a string -
but no enforcement will happen from graphtik, like:

>>> sideffect("price[sales_df]")
'sideffect(price[sales_df])'

	
class graphtik.modifiers.vararg[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/modifiers.py#L109]

	Annotate optionals needs to be fed as op-function’s *args when present in inputs.

See also

Consult also the example test-case in: test/test_op.py:test_varargs(),
in the full sources of the project.

Example:

>>> from graphtik import operation, compose, vararg

>>> def addall(a, *b):
... return a + sum(b)

Designate b & c as an vararg arguments:

>>> graph = compose(
... 'mygraph',
... operation(
... name='addall',
... needs=['a', vararg('b'), vararg('c')],
... provides='sum'
...)(addall)
...)
>>> graph
NetworkOperation('mygraph',
 needs=['a', optional('b'), optional('c')],
 provides=['sum'],
 x1 ops:
 +--FunctionalOperation(name='addall', needs=['a', vararg('b'), vararg('c')], provides=['sum'], fn='addall'))

The graph works with and without any of b or c inputs:

>>> graph(a=5, b=2, c=4)['sum']
11
>>> graph(a=5, b=2)
{'a': 5, 'b': 2, 'sum': 7}
>>> graph(a=5)
{'a': 5, 'sum': 5}

	
class graphtik.modifiers.varargs[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/modifiers.py#L158]

	Like vararg, naming an optional iterable value in the inputs.

See also

Consult also the example test-case in: test/test_op.py:test_varargs(),
in the full sources of the project.

Example:

>>> from graphtik import operation, compose, vararg

>>> def enlist(a, *b):
... return [a] + list(b)

>>> graph = compose('mygraph',
... operation(name='enlist', needs=['a', varargs('b')],
... provides='sum')(enlist)
...)
>>> graph
NetworkOperation('mygraph',
 needs=['a', optional('b')],
 provides=['sum'],
 x1 ops:
 +--FunctionalOperation(name='enlist', needs=['a', varargs('b')], provides=['sum'], fn='enlist'))

The graph works with or without b in the inputs:

>>> graph(a=5, b=[2, 20])['sum']
[5, 2, 20]
>>> graph(a=5)
{'a': 5, 'sum': [5]}
>>> graph(a=5, b=0xBAD)
Traceback (most recent call last):
...
graphtik.base.MultiValueError: Failed preparing needs:
 1. Expected needs[varargs('b')] to be non-str iterables!
 +++inputs: {'a': 5, 'b': 2989}
 +++FunctionalOperation(name='enlist', needs=['a', varargs('b')], provides=['sum'], fn='enlist')

Attention

To avoid user mistakes, it does not accept strings (though iterables):

>>> graph(a=5, b="mistake")
Traceback (most recent call last):
...
graphtik.base.MultiValueError: Failed preparing needs:
 1. Expected needs[varargs('b')] to be non-str iterables!
 +++inputs: {'a': 5, 'b': 'mistake'}
 +++FunctionalOperation(name='enlist', needs=['a', varargs('b')], provides=['sum'], fn='enlist')

 2. Graph Composition

2. Graph Composition

Graphtik’s compose factory handles the work of tying together operation
instances into a runnable computation graph.

The compose factory

For now, here’s the specification of compose. We’ll get into how to use it in a second.

	
graphtik.compose(name, op1, *operations, outputs: Union[Collection[T_co], str, None] = None, rescheduled=None, endured=None, parallel=None, marshalled=None, merge=False, node_props=None) → graphtik.netop.NetworkOperation[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik.py#L362]

	Composes a collection of operations into a single computation graph,
obeying the merge property, if set in the constructor.

	Parameters

	
	name (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – A optional name for the graph being composed by this object.

	op1 – syntactically force at least 1 operation

	operations – Each argument should be an operation instance created using
operation.

	merge (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If True, this compose object will attempt to merge together
operation instances that represent entire computation graphs.
Specifically, if one of the operation instances passed to this
compose object is itself a graph operation created by an
earlier use of compose the sub-operations in that graph are
compared against other operations passed to this compose
instance (as well as the sub-operations of other graphs passed to
this compose instance). If any two operations are the same
(based on name), then that operation is computed only once, instead
of multiple times (one for each time the operation appears).

	rescheduled – applies rescheduled to all contained operations

	endured – applies endurance to all contained operations

	parallel – mark all contained operations to be executed in parallel

	marshalled – mark all contained operations to be marshalled
(usefull when run in parallel with a process pool).

	node_props – added as-is into NetworkX graph, to provide for filtering
by NetworkOperation.withset().

	Returns

	Returns a special type of operation class, which represents an
entire computation graph as a single operation.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the net` cannot produce the asked outputs from the given inputs.

Simple composition of operations

The simplest use case for compose is assembling a collection of individual operations
into a runnable computation graph.
The example script from Quick start illustrates this well:

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

>>> # Computes |a|^p.
>>> def abspow(a, p):
... c = abs(a) ** p
... return c

>>> # Compose the mul, sub, and abspow operations into a computation graph.
>>> graphop = compose("graphop",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
... operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed"])
... (partial(abspow, p=3))
...)

The call here to compose() yields a runnable computation graph that looks like this
(where the circles are operations, squares are data, and octagons are parameters):

[image: _images/barebone_3ops.svg]

Running a computation graph

The graph composed in the example above in Simple composition of operations can be run
by simply calling it with a dictionary argument whose keys correspond to the names of inputs
to the graph and whose values are the corresponding input values.
For example, if graph is as defined above, we can run it like this:

Run the graph and request all of the outputs.
>>> out = graphop(a=2, b=5)
>>> out
{'a': 2, 'b': 5, 'ab': 10, 'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

Producing a subset of outputs

By default, calling a graph-operation on a set of inputs will yield all of that graph’s outputs.
You can use the outputs parameter to request only a subset.
For example, if graphop is as above:

Run the graph-operation and request a subset of the outputs.
>>> out = graphop.compute({'a': 2, 'b': 5}, outputs="a_minus_ab")
>>> out
{'a_minus_ab': -8}

When using outputs to request only a subset of a graph’s outputs, Graphtik executes
only the operation nodes in the graph that are on a path from the inputs to the requested outputs.
For example, the abspow1 operation will not be executed here.

Short-circuiting a graph computation

You can short-circuit a graph computation, making certain inputs unnecessary, by providing a value in the graph that is further downstream in the graph than those inputs. For example, in the graph-operation we’ve been working with, you could provide the value of a_minus_ab to make the inputs a and b unnecessary:

Run the graph-operation and request a subset of the outputs.
>>> out = graphop(a_minus_ab=-8)
>>> out
{'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

When you do this, any operation nodes that are not on a path from the downstream input to the requested outputs (i.e. predecessors of the downstream input) are not computed. For example, the mul1 and sub1 operations are not executed here.

This can be useful if you have a graph-operation that accepts alternative forms of the same input. For example, if your graph-operation requires a PIL.Image as input, you could allow your graph to be run in an API server by adding an earlier operation that accepts as input a string of raw image data and converts that data into the needed PIL.Image. Then, you can either provide the raw image data string as input, or you can provide the PIL.Image if you have it and skip providing the image data string.

Adding on to an existing computation graph

Sometimes you will have an existing computation graph to which you want to add operations.
This is simple, since compose can compose whole graphs along with individual operation instances.
For example, if we have graph as above, we can add another operation to it to create a new graph:

>>> # Add another subtraction operation to the graph.
>>> bigger_graph = compose("bigger_graph",
... graphop,
... operation(name="sub2", needs=["a_minus_ab", "c"], provides="a_minus_ab_minus_c")(sub)
...)

>>> # Run the graph and print the output.
>>> sol = bigger_graph.compute({'a': 2, 'b': 5, 'c': 5}, outputs=["a_minus_ab_minus_c"])
>>> sol
{'a_minus_ab_minus_c': -13}

This yields a graph which looks like this (see Plotting):

>>> bigger_graph.plot('bigger_example_graph.svg', solution=sol)

[image: _images/bigger_example_graph.svg]

More complicated composition: merging computation graphs

Sometimes you will have two computation graphs—perhaps ones that share operations—you want to combine into one. In the simple case, where the graphs don’t share operations or where you don’t care whether a duplicated operation is run multiple (redundant) times, you can just do something like this:

combined_graph = compose("combined_graph", graph1, graph2)

However, if you want to combine graphs that share operations and don’t want to pay the price of running redundant computations, you can set the merge parameter of compose() to True. This will consolidate redundant operation nodes (based on name) into a single node. For example, let’s say we have graphop, as in the examples above, along with this graph:

>>> # This graph shares the "mul1" operation with graph.
>>> another_graph = compose("another_graph",
... operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
... operation(name="mul2", needs=["c", "ab"], provides=["cab"])(mul)
...)

We can merge graphop and another_graph like so, avoiding a redundant mul1 operation:

>>> merged_graph = compose("merged_graph", graphop, another_graph, merge=True)
>>> print(merged_graph)
NetworkOperation('merged_graph',
 needs=['a', 'b', 'ab', 'a_minus_ab', 'c'],
 provides=['ab', 'a_minus_ab', 'abs_a_minus_ab_cubed', 'cab'],
 x4 ops:
...

This merged_graph will look like this:

[image: _images/example_merged_graph.svg]As always, we can run computations with this graph by simply calling it:

>>> merged_graph.compute({'a': 2, 'b': 5, 'c': 5}, outputs=["cab"])
{'cab': 50}

 3. Plotting and Debugging

3. Plotting and Debugging

Plotting

For Errors & debugging it is necessary to visualize the graph-operation.
You may plot the original plot and annotate on top the execution plan and
solution of the last computation, calling methods with arguments like this:

netop.plot(show=True) # open a matplotlib window
netop.plot("netop.svg") # other supported formats: png, jpg, pdf, ...
netop.plot() # without arguments return a pydot.DOT object
netop.plot(solution=solution) # annotate graph with solution values

… or for the last …:

solution.plot(...)

[image: execution plan]
[image: Graphtik Legend]The legend for all graphtik diagrams, generated by legend().

The same Plotter.plot() method applies also for:

	NetworkOperation

	Network

	ExecutionPlan

	Solution

each one capable to producing diagrams with increasing complexity.
Whenever possible, the top-level plot() methods will delegate to the ones below;
specifically, the netop keeps a transient reference to the last plan.
BUT the plan does not hold such a reference, you have to plot the solution.

For instance, when a net-operation has just been composed, plotting it will
come out bare bone, with just the 2 types of nodes (data & operations), their
dependencies, and the sequence of the execution-plan.

[image: barebone graph]But as soon as you run it, the net plot calls will print more of the internals.
Internally it delegates to ExecutionPlan.plot() of NetworkOperation.last_plan
attribute, which caches the last run to facilitate debugging.
If you want the bare-bone diagram, plot the network:

netop.net.plot(...)

If you want all details, plot the solution:

solution.net.plot(...)

Note

For plots, Graphviz [https://graphviz.org] program must be in your PATH,
and pydot & matplotlib python packages installed.
You may install both when installing graphtik with its plot extras:

pip install graphtik[plot]

Tip

The pydot.Dot [https://pypi.org/project/pydot/] instances returned by
Plotter.plot() are rendered directly in Jupyter/IPython notebooks
as SVG images.

You may increase the height of the SVG cell output with something like this:

netop.plot(jupyter_render={"svg_element_styles": "height: 600px; width: 100%"})

Check default_jupyter_render for defaults.

Errors & debugging

Graphs may become arbitrary deep. Launching a debugger-session to inspect
deeply nested stacks is notoriously hard

As a workaround, when some operation fails, the original exception gets annotated
with the following properties, as a debug aid:

>>> from graphtik import compose, operation
>>> from pprint import pprint

>>> def scream(*args):
... raise ValueError("Wrong!")

>>> try:
... compose("errgraph",
... operation(name="screamer", needs=['a'], provides=["foo"])(scream)
...)(a=None)
... except ValueError as ex:
... pprint(ex.jetsam)
{'aliases': None,
 'args': {'kwargs': {}, 'positional': [None], 'varargs': []},
 'network': Network(
 +--a
 +--FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn='scream')
 +--foo),
 'operation': FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn='scream'),
 'outputs': None,
 'plan': ExecutionPlan(needs=['a'], provides=['foo'], x1 steps:
 +--FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn='scream')),
 'provides': None,
 'results_fn': None,
 'results_op': None,
 'solution': {'a': None},
 'task': OpTask(FunctionalOperation(name='screamer', needs=['a'], provides=['foo'], fn='scream'), sol_keys=['a'])}

In interactive REPL console you may use this to get the last raised exception:

import sys

sys.last_value.jetsam

The following annotated attributes might have meaningful value on an exception:

	network

	the innermost network owning the failed operation/function

	plan

	the innermost plan that executing when a operation crashed

	operation

	the innermost operation that failed

	args

	either the input arguments list fed into the function, or a dict with
both args & kwargs keys in it.

	outputs

	the names of the outputs the function was expected to return

	provides

	the names eventually the graph needed from the operation;
a subset of the above, and not always what has been declared in the operation.

	fn_results

	the raw results of the operation’s function, if any

	op_results

	the results, always a dictionary, as matched with operation’s provides

	solution

	an instance of Solution, contains inputs & outputs till the error happened;
note that Solution.executed contain the list of executed operations so far.

Of course you may use many of the above “jetsam” values when plotting.

Note

The Plotting capabilities, along with the above annotation of exceptions
with the internal state of plan/operation often renders a debugger session
unnecessary. But since the state of the annotated values might be incomplete,
you may not always avoid one.

Execution internals

Compile & execute network graphs of operations.

 4. Architecture

4. Architecture

	COMPUTE	computation

	

 5. API Reference

5. API Reference

	graphtik

	Lightweight computation graphs for Python.

	graphtik.op

	About operation nodes (but not net-ops to break cycle).

	graphtik.modifiers

	Modifiers change the behavior of specific needs or provides.

	graphtik.netop

	About network operations (those based on graphs)

	graphtik.network

	Compile & execute network graphs of operations.

	graphtik.plot

	

	graphtik.config

	Configurations for network execution, and utilities on them.

	graphtik.base

	Generic or specific utilities

Module: op

About operation nodes (but not net-ops to break cycle).

	
class graphtik.op.Operation[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/op.py#L87]

	An abstract class representing an action with compute().

	
compute(named_inputs, outputs=None)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/op.py#L90]

	Compute (optional) asked outputs for the given named_inputs.

It is called by Network.
End-users should simply call the operation with named_inputs as kwargs.

	Parameters

	named_inputs – the input values with which to feed the computation.

	Returns list

	Should return a list values representing
the results of running the feed-forward computation on
inputs.

	
graphtik.op.reparse_operation_data(name, needs, provides)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/op.py#L63]

	Validate & reparse operation data as lists.

As a separate function to be reused by client code
when building operations and detect errors early.

Module: modifiers

Modifiers change the behavior of specific needs or provides.

The needs and provides annotated with modifiers designate, for instance,
optional function arguments, or “ghost” sideffects.

	
class graphtik.modifiers.arg[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/modifiers.py#L12]

	Annotate a needs to map from its name in the inputs to a different argument-name.

	Parameters

	fn_arg – The argument-name corresponding to this named-input.

Note

This extra mapping argument is needed either for optionals or
for functions with keywords-only arguments (like def func(*, foo, bar): ...),
since inputs` are normally fed into functions by-position, not by-name.

Example:

In case the name of the function arguments is different from the name in the
inputs (or just because the name in the inputs is not a valid argument-name),
you may map it with the 2nd argument of arg (or optional):

>>> from graphtik import operation, compose, arg

>>> def myadd(a, *, b):
... return a + b

>>> graph = compose('mygraph',
... operation(name='myadd',
... needs=['a', arg("name-in-inputs", "b")],
... provides="sum")(myadd)
...)
>>> graph
NetworkOperation('mygraph', needs=['a', 'name-in-inputs'], provides=['sum'], x1 ops:
 +--FunctionalOperation(name='myadd',
 needs=['a',
 arg('name-in-inputs'-->'b')],
 provides=['sum'],
 fn='myadd'))
>>> graph.compute({"a": 5, "name-in-inputs": 4})['sum']
9

	
class graphtik.modifiers.optional[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/modifiers.py#L66]

	Annotate optionals needs corresponding to defaulted op-function arguments, …

received only if present in the inputs (when operation is invocated).
The value of an optional is passed as a keyword argument to the underlying function.

Example:

>>> from graphtik import operation, compose, optional

>>> def myadd(a, b=0):
... return a + b

Annotate b as optional argument (and notice it’s default value 0):

>>> graph = compose('mygraph',
... operation(name='myadd',
... needs=["a", optional("b")],
... provides="sum")(myadd)
...)
>>> graph
NetworkOperation('mygraph',
 needs=['a', optional('b')],
 provides=['sum'],
 x1 ops:
...

The graph works both with and without c provided in the inputs:

>>> graph(a=5, b=4)['sum']
9
>>> graph(a=5)
{'a': 5, 'sum': 5}

	
class graphtik.modifiers.sideffect[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/modifiers.py#L217]

	sideffects dependencies participates in the graph but not exchanged with functions.

Both needs & provides may be designated as sideffects using this modifier.
They work as usual while solving the graph (compilation) but
they do not interact with the operation’s function; specifically:

	input sideffects must exist in the inputs for an operation to kick-in;

	input sideffects are NOT fed into the function;

	output sideffects are NOT expected from the function;

	output sideffects are stored in the solution.

Their purpose is to describe operations that modify the internal state of
some of their arguments (“side-effects”).

Example:

A typical use-case is to signify columns required to produce new ones in
pandas dataframes:

>>> from graphtik import operation, compose, sideffect

>>> # Function appending a new dataframe column from two pre-existing ones.
>>> def addcolumns(df):
... df['sum'] = df['a'] + df['b']

Designate a, b & sum column names as an sideffect arguments:

>>> graph = compose('mygraph',
... operation(
... name='addcolumns',
... needs=['df', sideffect('df.b')], # sideffect names can be anything
... provides=[sideffect('df.sum')])(addcolumns)
...)
>>> graph
NetworkOperation('mygraph', needs=['df', 'sideffect(df.b)'],
 provides=['sideffect(df.sum)'], x1 ops:
 +--FunctionalOperation(name='addcolumns', needs=['df', 'sideffect(df.b)'], provides=['sideffect(df.sum)'], fn='addcolumns'))

>>> df = pd.DataFrame({'a': [5, 0], 'b': [2, 1]}) # doctest: +SKIP
>>> graph({'df': df})['df'] # doctest: +SKIP
 a b
0 5 2
1 0 1

We didn’t get the sum column because the b sideffect was unsatisfied.
We have to add its key to the inputs (with any value):

>>> graph({'df': df, sideffect("df.b"): 0})['df'] # doctest: +SKIP
 a b sum
0 5 2 7
1 0 1 1

Note that regular data in needs and provides do not match same-named sideffects.
That is, in the following operation, the prices input is different from
the sideffect(prices) output:

>>> def upd_prices(sales_df, prices):
... sales_df["Prices"] = prices

>>> operation(fn=upd_prices,
... name="upd_prices",
... needs=["sales_df", "price"],
... provides=[sideffect("price")])
operation(name='upd_prices', needs=['sales_df', 'price'],
 provides=['sideffect(price)'], fn='upd_prices')

Note

An operation with sideffects outputs only, have functions that return
no value at all (like the one above). Such operation would still be called for
their side-effects, if requested in outputs.

Tip

You may associate sideffects with other data to convey their relationships,
simply by including their names in the string - in the end, it’s just a string -
but no enforcement will happen from graphtik, like:

>>> sideffect("price[sales_df]")
'sideffect(price[sales_df])'

	
class graphtik.modifiers.vararg[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/modifiers.py#L109]

	Annotate optionals needs to be fed as op-function’s *args when present in inputs.

See also

Consult also the example test-case in: test/test_op.py:test_varargs(),
in the full sources of the project.

Example:

>>> from graphtik import operation, compose, vararg

>>> def addall(a, *b):
... return a + sum(b)

Designate b & c as an vararg arguments:

>>> graph = compose(
... 'mygraph',
... operation(
... name='addall',
... needs=['a', vararg('b'), vararg('c')],
... provides='sum'
...)(addall)
...)
>>> graph
NetworkOperation('mygraph',
 needs=['a', optional('b'), optional('c')],
 provides=['sum'],
 x1 ops:
 +--FunctionalOperation(name='addall', needs=['a', vararg('b'), vararg('c')], provides=['sum'], fn='addall'))

The graph works with and without any of b or c inputs:

>>> graph(a=5, b=2, c=4)['sum']
11
>>> graph(a=5, b=2)
{'a': 5, 'b': 2, 'sum': 7}
>>> graph(a=5)
{'a': 5, 'sum': 5}

	
class graphtik.modifiers.varargs[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/modifiers.py#L158]

	Like vararg, naming an optional iterable value in the inputs.

See also

Consult also the example test-case in: test/test_op.py:test_varargs(),
in the full sources of the project.

Example:

>>> from graphtik import operation, compose, vararg

>>> def enlist(a, *b):
... return [a] + list(b)

>>> graph = compose('mygraph',
... operation(name='enlist', needs=['a', varargs('b')],
... provides='sum')(enlist)
...)
>>> graph
NetworkOperation('mygraph',
 needs=['a', optional('b')],
 provides=['sum'],
 x1 ops:
 +--FunctionalOperation(name='enlist', needs=['a', varargs('b')], provides=['sum'], fn='enlist'))

The graph works with or without b in the inputs:

>>> graph(a=5, b=[2, 20])['sum']
[5, 2, 20]
>>> graph(a=5)
{'a': 5, 'sum': [5]}
>>> graph(a=5, b=0xBAD)
Traceback (most recent call last):
...
graphtik.base.MultiValueError: Failed preparing needs:
 1. Expected needs[varargs('b')] to be non-str iterables!
 +++inputs: {'a': 5, 'b': 2989}
 +++FunctionalOperation(name='enlist', needs=['a', varargs('b')], provides=['sum'], fn='enlist')

Attention

To avoid user mistakes, it does not accept strings (though iterables):

>>> graph(a=5, b="mistake")
Traceback (most recent call last):
...
graphtik.base.MultiValueError: Failed preparing needs:
 1. Expected needs[varargs('b')] to be non-str iterables!
 +++inputs: {'a': 5, 'b': 'mistake'}
 +++FunctionalOperation(name='enlist', needs=['a', varargs('b')], provides=['sum'], fn='enlist')

Module: netop

About network operations (those based on graphs)

	
class graphtik.netop.NetworkOperation(operations, name, *, outputs=None, predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = None, rescheduled=None, endured=None, parallel=None, marshalled=None, merge=None, node_props=None)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/netop.py#L92]

	An operation that can compute a network-graph of operations.

Tip

Use compose() factory to prepare the net and build
instances of this class.

	
compile(inputs=None, outputs=<UNSET>, predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = <UNSET>) → graphtik.network.ExecutionPlan[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/netop.py#L251]

	Produce a plan for the given args or outputs/predicate narrowed earlier.

	Parameters

	
	named_inputs – a string or a list of strings that should be fed to the needs of all operations.

	outputs – A string or a list of strings with all data asked to compute.
If None, all possible intermediate outputs will be kept.
If not given, those set by a previous call to withset() or cstor are used.

	predicate – Will be stored and applied on the next compute() or compile().
If not given, those set by a previous call to withset() or cstor are used.

	Returns

	the execution plan satisfying the given inputs, outputs & predicate

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] –
	If outputs asked do not exist in network, with msg:

Unknown output nodes: …

	If solution does not contain any operations, with msg:

Unsolvable graph: …

	If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs…

	If outputs asked cannot be produced by the dag, with msg:

Impossible outputs…

	
compute(named_inputs: Mapping[KT, VT_co], outputs: Union[Collection[T_co], str, None] = <UNSET>, predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = <UNSET>) → graphtik.network.Solution[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/netop.py#L292]

	Compile a plan & execute the graph, sequentially or parallel.

Attention

If intermediate compilation is successful, the “global
abort run flag is reset before the execution starts.

	Parameters

	
	named_inputs – A maping of names –> values that will be fed to the needs of all operations.
Cloned, not modified.

	outputs – A string or a list of strings with all data asked to compute.
If None, all intermediate data will be kept.

	Returns

	The solution which contains the results of each operation executed
+1 for inputs in separate dictionaries.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] –
	If outputs asked do not exist in network, with msg:

Unknown output nodes: …

	If plan does not contain any operations, with msg:

Unsolvable graph: …

	If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs…

	If outputs asked cannot be produced by the dag, with msg:

Impossible outputs…

See also Operation.compute().

	
last_plan = None[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/netop.py]

	The execution_plan of the last call to compute(), stored as debugging aid.

	
name = None[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/netop.py]

	The name for the new netop, used when nesting them.

	
outputs = None[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/netop.py]

	The outputs names (possibly None) used to compile the plan.

	
predicate = None[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/netop.py]

	The node predicate is a 2-argument callable(op, node-data)
that should return true for nodes to include; if None, all nodes included.

	
withset(outputs: Union[Collection[T_co], str, None] = <UNSET>, predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = <UNSET>, *, name=None, rescheduled=None, endured=None, parallel=None, marshalled=None) → graphtik.netop.NetworkOperation[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/netop.py#L160]

	Return a copy with a network pruned for the given needs & provides.

	Parameters

	
	outputs – Will be stored and applied on the next compute() or compile().
If not given, the value of this instance is conveyed to the clone.

	predicate – Will be stored and applied on the next compute() or compile().
If not given, the value of this instance is conveyed to the clone.

	name – the name for the new netop:

	if None, the same name is kept;

	if True, a distinct name is devised:

<old-name>-<uid>

	otherwise, the given name is applied.

	rescheduled – applies rescheduled to all contained operations

	endured – applies endurance to all contained operations

	parallel – mark all contained operations to be executed in parallel

	marshalled – mark all contained operations to be marshalled
(usefull when run in parallel with a process pool).

	Returns

	A narrowed netop clone, which MIGHT be empty!*

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] –
	If outputs asked do not exist in network, with msg:

Unknown output nodes: …

	
graphtik.netop.compose(name, op1, *operations, outputs: Union[Collection[T_co], str, None] = None, rescheduled=None, endured=None, parallel=None, marshalled=None, merge=False, node_props=None) → graphtik.netop.NetworkOperation[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/netop.py#L362]

	Composes a collection of operations into a single computation graph,
obeying the merge property, if set in the constructor.

	Parameters

	
	name (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – A optional name for the graph being composed by this object.

	op1 – syntactically force at least 1 operation

	operations – Each argument should be an operation instance created using
operation.

	merge (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If True, this compose object will attempt to merge together
operation instances that represent entire computation graphs.
Specifically, if one of the operation instances passed to this
compose object is itself a graph operation created by an
earlier use of compose the sub-operations in that graph are
compared against other operations passed to this compose
instance (as well as the sub-operations of other graphs passed to
this compose instance). If any two operations are the same
(based on name), then that operation is computed only once, instead
of multiple times (one for each time the operation appears).

	rescheduled – applies rescheduled to all contained operations

	endured – applies endurance to all contained operations

	parallel – mark all contained operations to be executed in parallel

	marshalled – mark all contained operations to be marshalled
(usefull when run in parallel with a process pool).

	node_props – added as-is into NetworkX graph, to provide for filtering
by NetworkOperation.withset().

	Returns

	Returns a special type of operation class, which represents an
entire computation graph as a single operation.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – If the net` cannot produce the asked outputs from the given inputs.

Module: network

Compile & execute network graphs of operations.

	
exception graphtik.network.AbortedException[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L37]

	Raised from Network when abort_run() is called, and contains the solution …

with any values populated so far.

	
__module__ = 'graphtik.network'[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
__weakref__[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	list of weak references to the object (if defined)

	
class graphtik.network.ExecutionPlan[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L433]

	A pre-compiled list of operation steps that can execute for the given inputs/outputs.

It is the result of the network’s compilation phase.

Note the execution plan’s attributes are on purpose immutable tuples.

	
net[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	The parent Network

	
needs[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	An iset with the input names needed to exist in order to produce all provides.

	
provides[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	An iset with the outputs names produces when all inputs are given.

	
dag[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	The regular (not broken) pruned subgraph of net-graph.

	
steps[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	The tuple of operation-nodes & instructions needed to evaluate
the given inputs & asked outputs, free memory and avoid overwritting
any given intermediate inputs.

	
evict[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	when false, keep all inputs & outputs, and skip prefect-evictions check.

	
__abstractmethods__ = frozenset()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
__dict__ = mappingproxy({'__module__': 'graphtik.network', '__doc__': "\n A pre-compiled list of operation steps that can :term:`execute` for the given inputs/outputs.\n\n It is the result of the network's :term:`compilation` phase.\n\n Note the execution plan's attributes are on purpose immutable tuples.\n\n .. attribute:: net\n\n The parent :class:`Network`\n .. attribute:: needs\n\n An :class:`iset` with the input names needed to exist in order to produce all `provides`.\n .. attribute:: provides\n\n An :class:`iset` with the outputs names produces when all `inputs` are given.\n .. attribute:: dag\n\n The regular (not broken) *pruned* subgraph of net-graph.\n .. attribute:: steps\n\n The tuple of operation-nodes & *instructions* needed to evaluate\n the given inputs & asked outputs, free memory and avoid overwritting\n any given intermediate inputs.\n .. attribute:: evict\n\n when false, keep all inputs & outputs, and skip prefect-evictions check.\n ", '_build_pydot': <function ExecutionPlan._build_pydot>, '__repr__': <function ExecutionPlan.__repr__>, 'validate': <function ExecutionPlan.validate>, '_check_if_aborted': <function ExecutionPlan._check_if_aborted>, '_prepare_tasks': <function ExecutionPlan._prepare_tasks>, '_handle_task': <function ExecutionPlan._handle_task>, '_execute_thread_pool_barrier_method': <function ExecutionPlan._execute_thread_pool_barrier_method>, '_execute_sequential_method': <function ExecutionPlan._execute_sequential_method>, 'execute': <function ExecutionPlan.execute>, '__dict__': <attribute '__dict__' of 'ExecutionPlan' objects>, '__abstractmethods__': frozenset(), '_abc_impl': <_abc_data object>})[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
__module__ = 'graphtik.network'[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
__repr__()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L482]

	Return a nicely formatted representation string

	
_abc_impl = <_abc_data object>[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
_build_pydot(**kws)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L465]

	

	
_check_if_aborted(solution)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L528]

	

	
_execute_sequential_method(solution: graphtik.network.Solution)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L706]

	This method runs the graph one operation at a time in a single thread

	Parameters

	solution – must contain the input values only, gets modified

	
_execute_thread_pool_barrier_method(solution: graphtik.network.Solution)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L626]

	This method runs the graph using a parallel pool of thread executors.
You may achieve lower total latency if your graph is sufficiently
sub divided into operations using this method.

	Parameters

	solution – must contain the input values only, gets modified

	
_handle_task(future, op, solution) → None[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L575]

	Un-dill parallel task results (if marshalled), and update solution / handle failure.

	
_prepare_tasks(operations, solution, pool, global_parallel, global_marshal) → Union[Future, graphtik.network._OpTask, bytes][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L532]

	Combine ops+inputs, apply marshalling, and submit to execution pool (or not) …

based on global/pre-op configs.

	
execute(named_inputs, outputs=None, *, name='') → graphtik.network.Solution[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L737]

	
	Parameters

	
	named_inputs – A maping of names –> values that must contain at least
the compulsory inputs that were specified when the plan was built
(but cannot enforce that!).
Cloned, not modified.

	outputs – If not None, they are just checked if possible, based on provides,
and scream if not.

	Returns

	The solution which contains the results of each operation executed
+1 for inputs in separate dictionaries.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] –
	If plan does not contain any operations, with msg:

Unsolvable graph: …

	If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs…

	If outputs asked cannot be produced by the dag, with msg:

Impossible outputs…

	
validate(inputs: Union[Collection[T_co], str, None], outputs: Union[Collection[T_co], str, None])[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L488]

	Scream on invalid inputs, outputs or no operations in graph.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] –
	If cannot produce any outputs from the given inputs, with msg:

Unsolvable graph: …

	If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs…

	If outputs asked cannot be produced by the dag, with msg:

Impossible outputs…

	
exception graphtik.network.IncompleteExecutionError[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L45]

	Raised by scream_if_incomplete() when netop operations were canceled/failed.

The exception contains 3 arguments:

	the causal errors and conditions (1st arg),

	the list of collected exceptions (2nd arg), and

	the solution instance (3rd argument), to interrogate for more.

	
__module__ = 'graphtik.network'[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
__str__()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L56]

	Return str(self).

	
__weakref__[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	list of weak references to the object (if defined)

	
class graphtik.network.Network(*operations, graph=None)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L830]

	A graph of operations that can compile an execution plan.

	
needs[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	the “base”, all data-nodes that are not produced by some operation

	
provides[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	the “base”, all data-nodes produced by some operation

	
__abstractmethods__ = frozenset()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
__init__(*operations, graph=None)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L842]

	
	Parameters

	
	operations – to be added in the graph

	graph – if None, create a new.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] – if dupe operation, with msg:

Operations may only be added once, …

	
__module__ = 'graphtik.network'[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
__repr__()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L881]

	Return repr(self).

	
_abc_impl = <_abc_data object>[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
_append_operation(graph, operation: graphtik.op.Operation)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L894]

	Adds the given operation and its data requirements to the network graph.

	Invoked during constructor only (immutability).

	Identities are based on the name of the operation, the names of the operation’s needs,
and the names of the data it provides.

	Adds needs, operation & provides, in that order.

	Parameters

	
	graph – the networkx graph to append to

	operation – operation instance to append

	
_apply_graph_predicate(graph, predicate)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L938]

	

	
_build_execution_steps(pruned_dag, inputs: Collection[T_co], outputs: Optional[Collection[T_co]]) → List[T][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L1077]

	Create the list of operation-nodes & instructions evaluating all

operations & instructions needed a) to free memory and b) avoid
overwritting given intermediate inputs.

	Parameters

	
	pruned_dag – The original dag, pruned; not broken.

	outputs – outp-names to decide whether to add (and which) evict-instructions

Instances of _EvictInstructions are inserted in steps between
operation nodes to reduce the memory footprint of solutions while
the computation is running.
An evict-instruction is inserted whenever a need is not used
by any other operation further down the DAG.

	
_build_pydot(**kws)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L885]

	

	
_cached_plans = None[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	Speed up compile() call and avoid a multithreading issue(?)
that is occuring when accessing the dag in networkx.

	
_prune_graph(inputs: Union[Collection[T_co], str, None], outputs: Union[Collection[T_co], str, None], predicate: Callable[[Any, Mapping[KT, VT_co]], bool] = None) → Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7f533b78a748>, Collection[T_co], Collection[T_co], Collection[T_co]][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L951]

	Determines what graph steps need to run to get to the requested
outputs from the provided inputs:
- Eliminate steps that are not on a path arriving to requested outputs;
- Eliminate unsatisfied operations: partial inputs or no outputs needed;
- consolidate the list of needs & provides.

	Parameters

	
	inputs – The names of all given inputs.

	outputs – The desired output names. This can also be None, in which
case the necessary steps are all graph nodes that are reachable
from the provided inputs.

	predicate – the node predicate is a 2-argument callable(op, node-data)
that should return true for nodes to include; if None, all nodes included.

	Returns

	a 3-tuple with the pruned_dag & the needs/provides resolved based
on the given inputs/outputs
(which might be a subset of all needs/outputs of the returned graph).

Use the returned needs/provides to build a new plan.

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] –
	if outputs asked do not exist in network, with msg:

Unknown output nodes: …

	
_topo_sort_nodes(dag) → List[T][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L933]

	Topo-sort dag respecting operation-insertion order to break ties.

	
compile(inputs: Union[Collection[T_co], str, None] = None, outputs: Union[Collection[T_co], str, None] = None, predicate=None) → graphtik.network.ExecutionPlan[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L1166]

	Create or get from cache an execution-plan for the given inputs/outputs.

See _prune_graph() and _build_execution_steps()
for detailed description.

	Parameters

	
	inputs – A collection with the names of all the given inputs.
If None`, all inputs that lead to given outputs are assumed.
If string, it is converted to a single-element collection.

	outputs – A collection or the name of the output name(s).
If None`, all reachable nodes from the given inputs are assumed.
If string, it is converted to a single-element collection.

	predicate – the node predicate is a 2-argument callable(op, node-data)
that should return true for nodes to include; if None, all nodes included.

	Returns

	the cached or fresh new execution plan

	Raises

	ValueError [https://docs.python.org/3.8/library/exceptions.html#ValueError] –
	If outputs asked do not exist in network, with msg:

Unknown output nodes: …

	If solution does not contain any operations, with msg:

Unsolvable graph: …

	If given inputs mismatched plan’s needs, with msg:

Plan needs more inputs…

	If outputs asked cannot be produced by the dag, with msg:

Impossible outputs…

	
class graphtik.network.Solution(plan, input_values)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L121]

	Collects outputs from operations, preserving overwrites.

	
plan[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	the plan that produced this solution

	
executed[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	A dictionary with keys the operations executed, and values their status:

	no key: not executed yet

	value None: execution ok

	value Exception: execution failed

	
canceled[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	A sorted set of canceled operations due to upstream failures.

	
finalized[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	a flag denoting that this instance cannot accept more results
(after the finalized() has been invoked)

	
__abstractmethods__ = frozenset()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
__delitem__(key)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L254]

	

	
__init__(plan, input_values)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L145]

	Initialize a ChainMap by setting maps to the given mappings.
If no mappings are provided, a single empty dictionary is used.

	
__module__ = 'graphtik.network'[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
__repr__()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L175]

	Return repr(self).

	
_abc_impl = <_abc_data object>[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
_build_pydot(**kws)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L304]

	delegate to network

	
finalize()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L247]

	invoked only once, after all ops have been executed

	
is_failed(op)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L258]

	

	
operation_executed(op, outputs)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L179]

	Invoked once per operation, with its results.

It will update executed with the operation status and
if outputs were partials, it will update canceled
with the unsatisfied ops downstream of op.

	Parameters

	
	op – the operation that completed ok

	outputs – The names of the outputs values the op` actually produced,
which may be a subset of its provides. Sideffects are not considered.

	
operation_failed(op, ex)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L223]

	Invoked once per operation, with its results.

It will update executed with the operation status and
the canceled with the unsatisfied ops downstream of op.

	
overwrites[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	The data in the solution that exist more than once.

A “virtual” property to a dictionary with keys the names of values that
exist more than once, and values, all those values in a list, ordered:

	before finished(), as computed;

	after finished(), in reverse.

	
scream_if_incomplete()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L280]

	Raise a IncompleteExecutionError when netop operations failed/canceled.

	
class graphtik.network._DataNode[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L311]

	Dag node naming a data-value produced or required by an operation.

	
__module__ = 'graphtik.network'[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
__repr__()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L318]

	Return repr(self).

	
__slots__ = ()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
class graphtik.network._EvictInstruction[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L322]

	A step in the ExecutionPlan to evict a computed value from the solution.

It’s a step in ExecutionPlan.steps for the data-node str that
frees its data-value from solution after it is no longer needed,
to reduce memory footprint while computing the graph.

	
__module__ = 'graphtik.network'[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
__repr__()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L333]

	Return repr(self).

	
__slots__ = ()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
class graphtik.network._OpTask(op, sol, solid)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L372]

	Mimic concurrent.futures.Future [https://docs.python.org/3.8/library/concurrent.futures.html#concurrent.futures.Future] for sequential execution.

This intermediate class is needed to solve pickling issue with process executor.

	
__call__()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L393]

	Call self as a function.

	
__init__(op, sol, solid)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L382]

	Initialize self. See help(type(self)) for accurate signature.

	
__module__ = 'graphtik.network'[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
__repr__()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L404]

	Return repr(self).

	
__slots__ = ('op', 'sol', 'result', 'solid')[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
get()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L393]

	Call self as a function.

	
logname = 'graphtik.network'[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
marshalled()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L388]

	

	
op[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
result[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
sol[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
solid[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
graphtik.network._do_task(task)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L412]

	Un-dill the simpler _OpTask & Dill the results, to pass through pool-processes.

See https://stackoverflow.com/a/24673524/548792

	
graphtik.network._optionalized(graph, data)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L347]

	Retain optionality of a data node based on all needs edges.

	
graphtik.network._unsatisfied_operations(dag, inputs: Collection[T_co]) → List[T][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L60]

	Traverse topologically sorted dag to collect un-satisfied operations.

Unsatisfied operations are those suffering from ANY of the following:

	
	They are missing at least one compulsory need-input.

	Since the dag is ordered, as soon as we’re on an operation,
all its needs have been accounted, so we can get its satisfaction.

	
	Their provided outputs are not linked to any data in the dag.

	An operation might not have any output link when _prune_graph()
has broken them, due to given intermediate inputs.

	Parameters

	
	dag – a graph with broken edges those arriving to existing inputs

	inputs – an iterable of the names of the input values

	Returns

	a list of unsatisfied operations to prune

	
graphtik.network._yield_datanodes(nodes)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L337]

	May scan dag nodes.

	
graphtik.network.collect_requirements(graph) → Tuple[<sphinx.ext.autodoc.importer._MockObject object at 0x7f533ba00ba8>, <sphinx.ext.autodoc.importer._MockObject object at 0x7f533ba00ba8>][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L362]

	Collect & split datanodes in (possibly overlapping) needs/provides.

	
graphtik.network.is_endure_operations() → Optional[bool][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
graphtik.network.is_marshal_tasks() → Optional[bool][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
graphtik.network.is_parallel_tasks() → Optional[bool][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
graphtik.network.is_reschedule_operations() → Optional[bool][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
graphtik.network.is_skip_evictions() → Optional[bool][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py]

	

	
graphtik.network.yield_ops(nodes)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/network.py#L342]

	May scan (preferably) plan.steps or dag nodes.

Module: plot

Plotting of graphtik graphs.

	
graphtik.plot.build_pydot(graph, steps=None, inputs=None, outputs=None, solution=None, title=None, node_props=None, edge_props=None, clusters=None, legend_url='https://graphtik.readthedocs.io/en/latest/_images/GraphtikLegend.svg') → <sphinx.ext.autodoc.importer._MockObject object at 0x7f533bb23ac8>[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/plot.py#L141]

	Build a Graphviz out of a Network graph/steps/inputs/outputs and return it.

See Plotter.plot() for the arguments, sample code, and
the legend of the plots.

	
graphtik.plot.default_jupyter_render = {'svg_container_styles': '', 'svg_element_styles': 'width: 100%; height: 300px;', 'svg_pan_zoom_json': '{controlIconsEnabled: true, zoomScaleSensitivity: 0.4, fit: true}'}[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/plot.py]

	A nested dictionary controlling the rendering of graph-plots in Jupyter cells,

as those returned from Plotter.plot() (currently as SVGs).
Either modify it in place, or pass another one in the respective methods.

The following keys are supported.

	Parameters

	
	svg_pan_zoom_json – arguments controlling the rendering of a zoomable SVG in
Jupyter notebooks, as defined in https://github.com/ariutta/svg-pan-zoom#how-to-use
if None, defaults to string (also maps supported):

"{controlIconsEnabled: true, zoomScaleSensitivity: 0.4, fit: true}"

	svg_element_styles – mostly for sizing the zoomable SVG in Jupyter notebooks.
Inspect & experiment on the html page of the notebook with browser tools.
if None, defaults to string (also maps supported):

"width: 100%; height: 300px;"

	svg_container_styles – like svg_element_styles, if None, defaults to empty string (also maps supported).

	
graphtik.plot.legend(filename=None, show=None, jupyter_render: Mapping[KT, VT_co] = None, arch_url='https://graphtik.readthedocs.io/en/latest/arch.html')[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/plot.py#L385]

	Generate a legend for all plots (see Plotter.plot() for args)

	Parameters

	arch_url – the url to the architecture section explaining graphtik glossary.

See render_pydot() for the rest arguments.

	
graphtik.plot.render_pydot(dot: <sphinx.ext.autodoc.importer._MockObject object at 0x7f533bb232b0>, filename=None, show=False, jupyter_render: str = None)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/plot.py#L323]

	Plot a Graphviz dot in a matplotlib, in file or return it for Jupyter.

	Parameters

	
	dot – the pre-built Graphviz pydot.Dot instance

	filename (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – Write diagram into a file.
Common extensions are .png .dot .jpg .jpeg .pdf .svg
call plot.supported_plot_formats() for more.

	show – If it evaluates to true, opens the diagram in a matplotlib window.
If it equals -1, it returns the image but does not open the Window.

	jupyter_render – a nested dictionary controlling the rendering of graph-plots in Jupyter cells.
If None, defaults to default_jupyter_render
(you may modify those in place and they will apply for all future calls).

You may increase the height of the SVG cell output with
something like this:

netop.plot(jupyter_render={"svg_element_styles": "height: 600px; width: 100%"})

	Returns

	the matplotlib image if show=-1, or the dot.

See Plotter.plot() for sample code.

	
graphtik.plot.supported_plot_formats() → List[str][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/plot.py#L318]

	return automatically all pydot extensions

Module: config

Configurations for network execution, and utilities on them.

	
graphtik.config.abort_run()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py#L48]

	Sets the abort run global flag, to halt all currently or future executing plans.

This global flag is reset when any NetworkOperation.compute() is executed,
or manually, by calling reset_abort().

	
graphtik.config.evictions_skipped(enabled)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	Like set_skip_evictions() as a context-manager to reset old value.

	
graphtik.config.get_execution_pool() → Optional[Pool][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py#L102]

	Get the process-pool for parallel plan executions.

	
graphtik.config.is_abort()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py#L63]

	Return True if networks have been signaled to stop execution.

	
graphtik.config.is_endure_operations() → Optional[bool][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	see set_endure_operations()

	
graphtik.config.is_marshal_tasks() → Optional[bool][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	see set_marshal_tasks()

	
graphtik.config.is_parallel_tasks() → Optional[bool][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	see set_parallel_tasks()

	
graphtik.config.is_reschedule_operations() → Optional[bool][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	see set_reschedule_operations()

	
graphtik.config.is_skip_evictions() → Optional[bool][source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	see set_skip_evictions()

	
graphtik.config.operations_endured(enabled)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	Like set_endure_operations() as a context-manager to reset old value.

	
graphtik.config.operations_reschedullled(enabled)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	Like set_reschedule_operations() as a context-manager to reset old value.

	
graphtik.config.reset_abort()[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py#L58]

	Reset the abort run global flag, to permit plan executions to proceed.

	
graphtik.config.set_endure_operations(enabled)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	Enable/disable globally endurance to keep executing even if some operations fail.

	Parameters

	enable –
	If None (default), respect the flag on each operation;

	If true/false, force it for all operations.

	Returns

	a “reset” token (see ContextVar.set())

.

	
graphtik.config.set_execution_pool(pool: Optional[Pool])[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py#L92]

	Set the process-pool for parallel plan executions.

You may have to :also func:set_marshal_tasks() to resolve
pickling issues.

	
graphtik.config.set_marshal_tasks(enabled)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	Enable/disable globally marshalling of parallel operations, …

inputs & outputs with dill [https://dill.readthedocs.io/en/latest/index.html#module-dill], which might help for pickling problems.

	Parameters

	enable –
	If None (default), respect the respective flag on each operation;

	If true/false, force it for all operations.

	Returns

	a “reset” token (see ContextVar.set())

	
graphtik.config.set_parallel_tasks(enabled)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	Enable/disable globally parallel execution of operations.

	Parameters

	enable –
	If None (default), respect the respective flag on each operation;

	If true/false, force it for all operations.

	Returns

	a “reset” token (see ContextVar.set())

	
graphtik.config.set_reschedule_operations(enabled)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	Enable/disable globally rescheduling for operations returning only partial outputs.

	Parameters

	enable –
	If None (default), respect the flag on each operation;

	If true/false, force it for all operations.

	Returns

	a “reset” token (see ContextVar.set())

.

	
graphtik.config.set_skip_evictions(enabled)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	When true, disable globally evictions, to keep all intermediate solution values, …

regardless of asked outputs.

	Returns

	a “reset” token (see ContextVar.set())

	
graphtik.config.tasks_in_parallel(enabled)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	Like set_parallel_tasks() as a context-manager to reset old value.

	
graphtik.config.tasks_marshalled(enabled)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/config.py]

	Like set_marshal_tasks() as a context-manager to reset old value.

Module: base

Generic or specific utilities

	
exception graphtik.base.MultiValueError[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/base.py#L16]

	

	
graphtik.base.NO_RESULT = <NO_RESULT>[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/base.py]

	When an operation function returns this special value,
it implies operation has no result at all,
(otherwise, it would have been a single result, None).`

	
class graphtik.base.Plotter[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/base.py#L203]

	Classes wishing to plot their graphs should inherit this and …

implement property plot to return a “partial” callable that somehow
ends up calling plot.render_pydot() with the graph or any other
args bound appropriately.
The purpose is to avoid copying this function & documentation here around.

	
plot(filename=None, show=False, jupyter_render: Union[None, Mapping[KT, VT_co], str] = None, **kws)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/base.py#L213]

	Entry-point for plotting ready made operation graphs.

	Parameters

	
	filename (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – Write diagram into a file.
Common extensions are .png .dot .jpg .jpeg .pdf .svg
call plot.supported_plot_formats() for more.

	show – If it evaluates to true, opens the diagram in a matplotlib window.
If it equals -1, it plots but does not open the Window.

	inputs – an optional name list, any nodes in there are plotted
as a “house”

	outputs – an optional name list, any nodes in there are plotted
as an “inverted-house”

	solution – an optional dict with values to annotate nodes, drawn “filled”
(currently content not shown, but node drawn as “filled”).
It extracts more infos from a Solution instance, such as,
if solution has an executed attribute, operations contained in it
are drawn as “filled”.

	title – an optional string to display at the bottom of the graph

	node_props – an optional nested dict of Graphviz attributes for certain nodes

	edge_props – an optional nested dict of Graphviz attributes for certain edges

	clusters – an optional mapping of nodes –> cluster-names, to group them

	jupyter_render – a nested dictionary controlling the rendering of graph-plots in Jupyter cells,
if None, defaults to jupyter_render (you may modify it in place
and apply for all future calls).

	legend_url – a URL to the graphtik legend; if it evaluates to false, none is added.

	Returns

	a pydot.Dot [https://pypi.org/project/pydot/] instance
(for for API reference visit:
https://pydotplus.readthedocs.io/reference.html#pydotplus.graphviz.Dot)

Tip

The pydot.Dot instance returned is rendered directly
in Jupyter/IPython notebooks as SVG images.

You may increase the height of the SVG cell output with
something like this:

netop.plot(jupyter_render={"svg_element_styles": "height: 600px; width: 100%"})

Check default_jupyter_render for defaults.

Note that the graph argument is absent - Each Plotter provides
its own graph internally; use directly render_pydot() to provide
a different graph.

[image: Graphtik Legend]NODES:

	oval

	function

	egg

	subgraph operation

	house

	given input

	inversed-house

	asked output

	polygon

	given both as input & asked as output (what?)

	square

	intermediate data, neither given nor asked.

	red frame

	evict-instruction, to free up memory.

	filled

	data node has a value in solution OR function has been executed.

	thick frame

	function/data node in execution steps.

ARROWS

	solid black arrows

	dependencies (source-data need-ed by target-operations,
sources-operations provides target-data)

	dashed black arrows

	optional needs

	blue arrows

	sideffect needs/provides

	wheat arrows

	broken dependency (provide) during pruning

	green-dotted arrows

	execution steps labeled in succession

To generate the legend, see legend().

Sample code:

>>> from graphtik import compose, operation
>>> from graphtik.modifiers import optional
>>> from operator import add

>>> netop = compose("netop",
... operation(name="add", needs=["a", "b1"], provides=["ab1"])(add),
... operation(name="sub", needs=["a", optional("b2")], provides=["ab2"])(lambda a, b=1: a-b),
... operation(name="abb", needs=["ab1", "ab2"], provides=["asked"])(add),
...)

>>> netop.plot(show=True); # plot just the graph in a matplotlib window # doctest: +SKIP
>>> inputs = {'a': 1, 'b1': 2}
>>> solution = netop(**inputs) # now plots will include the execution-plan

>>> netop.plot('plot1.svg', inputs=inputs, outputs=['asked', 'b1'], solution=solution); # doctest: +SKIP
>>> dot = netop.plot(solution=solution); # just get the `pydot.Dot` object, renderable in Jupyter
>>> print(dot)
digraph G {
 URL="https://graphtik.readthedocs.io/en/latest/_images/GraphtikLegend.svg";
 fontname=italic;
 label=netop;
 a [fillcolor=wheat, shape=invhouse, style=filled, tooltip=1];
...

	
class graphtik.base.Token(*args)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/base.py#L22]

	Guarantee equality, not(!) identity, across processes.

	
hashid[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/base.py]

	

	
graphtik.base.aslist(i, argname, allowed_types=<class 'list'>)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/base.py#L67]

	Utility to accept singular strings as lists, and None –> [].

	
graphtik.base.astuple(i, argname, allowed_types=<class 'tuple'>)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/base.py#L83]

	

	
graphtik.base.jetsam(ex, locs, *salvage_vars, annotation='jetsam', **salvage_mappings)[source] [https://github.com/pygraphkit/graphtik/blob/d9b868e6f8755cb9327eb0308c1ce1a650853a0e/graphtik/base.py#L100]

	Annotate exception with salvaged values from locals() and raise!

	Parameters

	
	ex – the exception to annotate

	locs – locals() from the context-manager’s block containing vars
to be salvaged in case of exception

ATTENTION: wrapped function must finally call locals(), because
locals dictionary only reflects local-var changes after call.

	annotation – the name of the attribute to attach on the exception

	salvage_vars – local variable names to save as is in the salvaged annotations dictionary.

	salvage_mappings – a mapping of destination-annotation-keys –> source-locals-keys;
if a source is callable, the value to salvage is retrieved
by calling value(locs).
They take precendance over`salvage_vars`.

	Raises

	any exception raised by the wrapped function, annotated with values
assigned as attributes on this context-manager

	Any attributes attached on this manager are attached as a new dict on
the raised exception as new jetsam attribute with a dict as value.

	If the exception is already annotated, any new items are inserted,
but existing ones are preserved.

Example:

Call it with managed-block’s locals() and tell which of them to salvage
in case of errors:

try:
 a = 1
 b = 2
 raise Exception()
exception Exception as ex:
 jetsam(ex, locals(), "a", b="salvaged_b", c_var="c")
 raise

And then from a REPL:

import sys
sys.last_value.jetsam
{'a': 1, 'salvaged_b': 2, "c_var": None}

** Reason:**

Graphs may become arbitrary deep. Debugging such graphs is notoriously hard.

The purpose is not to require a debugger-session to inspect the root-causes
(without precluding one).

Naively salvaging values with a simple try/except block around each function,
blocks the debugger from landing on the real cause of the error - it would
land on that block; and that could be many nested levels above it.

 6. Graphtik Changelog

6. Graphtik Changelog

TODOs

See #1 [https://github.com/pygraphkit/graphtik/issues/1].

GitHub Releases

https://github.com/pygraphkit/graphtik/releases

Changelog

v5.2.0 (27 Feb 2020, @ankostis): Map needs inputs –> args, SPELLCHECK

	FEAT(modifiers): optionals and new modifier arg can now fetch values
from inputs into differently-named arguments of operation functions.

	refact: decouple varargs from optional modifiers hierarchy.

	REFACT(OP): preparation of NEEDS –> function-args happens once for each
argument, allowing to report all errors at once.

	feat(base): +MultiValueError exception class.

	DOC(modifiers,arch): modifiers were not included in “API reference”, nor
in the glossary sections.

	FIX: spell-check everything, and add all custom words in the VSCode settings file
.vscode.settings.json.

v5.1.0 (22 Jan 2020, @ankostis): accept named-tuples/objects provides

	ENH(OP): flag returns_dict handles also named-tuples & objects (__dict__).

v5.0.0 (31 Dec 2019, @ankostis): Method–>Parallel, all configs now per op flags; Screaming Solutions on fails/partials

	BREAK(NETOP): compose(method="parallel") --> compose(parallel=None/False/True)
and DROP netop.set_execution_method(method); parallel now also controlled
with the global set_parallel_tasks() configurations function.

	feat(jetsam): report task executed in raised exceptions.

	break(netop): rename netop.narrowed() --> withset() toi mimic Operation
API.

	break: rename flags:

	reschedule --> rescheduleD

	marshal --> marshalLED.

	break: rename global configs, as context-managers:

	marshal_parallel_tasks --> tasks_marshalled

	endure_operations --> operations_endured

	FIX(net, plan,.TC): global skip evictions flag were not fully obeyed
(was untested).

	FIX(OP): revamped zipping of function outputs with expected provides,
for all combinations of rescheduled, NO_RESULT & returns dictionary
flags.

	configs:

	refact: extract configs in their own module.

	refact: make all global flags tri-state (None, False, True),
allowing to “force” operation flags when not None.
All default to None (false).

	ENH(net, sol, logs): include a “solution-id” in revamped log messages,
to facilitate developers to discover issues when multiple netops
are running concurrently.
Heavily enhanced log messages make sense to the reader of all actions performed.

	ENH(plot): set toolltips with repr(op) to view all operation flags.

	FIX(TCs): close process-pools; now much more TCs for parallel combinations
of threaded, process-pool & marshalled.

	ENH(netop,net): possible to abort many netops at once, by resetting abort flag
on every call of NetworkOperation.compute()
(instead of on the first stopped netop).

	FEAT(SOL): scream_if_incomplete() will raise the new
IncompleteExecutionError exception if failures/partial-outs
of endured/rescheduled operations prevented all operations to complete;
exception message details causal errors and conditions.

	feat(build): +``all`` extras.

	FAIL: x2 multi-threaded TCs fail spuriously with “inverse dag edges”:

	test_multithreading_plan_execution()

	test_multi_threading_computes()

both marked as xfail.

v4.4.1 (22 Dec 2019, @ankostis): bugfix debug print

	fix(net): had forgotten a debug-print on every operation call.

	doc(arch): explain parallel & the need for marshalling
with process pools.

v4.4.0 (21 Dec 2019, @ankostis): RESCHEDULE for PARTIAL Outputs, on a per op basis

	[x] dynamic Reschedule after operations with partial outputs execute.

	[x] raise after jetsam.

	[x] plots link to legend.

	[x] refact netop

	[x] endurance per op.

	[x] endurance/reschedule for all netop ops.

	[x] merge _Rescheduler into Solution.

	[x] keep order of outputs in Solution even for parallels.

	[x] keep solution layers ordered also for parallel.

	[x] require user to create & enter pools.

	[x] FIX pickling THREAD POOL –>Process.

Details

	FIX(NET): keep Solution’s insertion order also for PARALLEL executions.

	FEAT(NET, OP): rescheduled operations with partial outputs;
they must have FunctionalOperation.reschedule set to true,
or else they will fail.

	FEAT(OP, netop): specify endurance/reschedule on a per operation basis,
or collectively for all operations grouped under some netop.

	REFACT(NETOP):

	feat(netop): new method NetworkOperation.compile(), delegating to
same-named method of network.

	drop(net): method Net.narrowed(); remember netop.narrowed(outputs+predicate)
and apply them on netop.compute() & netop.compile().

	PROS: cache narrowed plans.

	CONS: cannot review network, must review plan of (new) netop.compile().

	drop(netop): inputs args in narrowed() didn’t make much sense,
leftover from “unvarying netops”; but exist ni netop.compile().

	refact(netop): move net-assembly from compose() –> NetOp cstor;
now reschedule/endured/merge/method args in cstor.

	NET,OP,TCs: FIX PARALLEL POOL CONCURRENCY

	Network:

	feat: +marshal +_OpTask

	refact: plan._call_op –> _handle_task

	enh: Make abort run variable a shared-memory Value.

	REFACT(OP,.TC): not a namedtuple, breaks pickling.

	ENH(pool): Pool

	FIX: compare Tokens with is –> ==,
or else, it won’t work for sub-processes.

	TEST: x MULTIPLE TESTS

	+4 tags: parallel, thread, proc, marshal.

	many uses of exemethod.

	FIX(build): PyPi README check did not detect forbidden raw directives,
and travis auto-deployments were failing.

	doc(arch): more terms.

v4.3.0 (16 Dec 2019, @ankostis): Aliases

	FEAT(OP): support “aliases” of provides, to avoid trivial pipe-through operations,
just to rename & match operations.

v4.2.0 (16 Dec 2019, @ankostis): ENDURED Execution

	FEAT(NET): when set_endure_operations() configuration is set to true,
a netop will keep on calculating solution, skipping any operations
downstream from failed ones. The solution eventually collects all failures
in Solution.failures attribute.

	ENH(DOC,plot): Links in Legend and Architecture Workflow SVGs now work,
and delegate to architecture terms.

	ENH(plot): mark overwrites, failed & canceled in repr()
(see endurance).

	refact(conf): fully rename configuration operation skip_evictions.

	REFACT(jetsam): raise after jetsam in situ, better for Readers & Linters.

	enh(net): improve logging.

v4.1.0 (13 Dec 2019, @ankostis): ChainMap Solution for Rewrites, stable TOPOLOGICAL sort

 Python Module Index

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 graphtik	

 	
 	
 graphtik.base	

 	
 	
 graphtik.config	

 	
 	
 graphtik.modifiers	

 	
 	
 graphtik.netop	

 	
 	
 graphtik.network	

 	
 	
 graphtik.op	

 	
 	
 graphtik.plot	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

_

 	
 	__abstractmethods__ (graphtik.network.ExecutionPlan attribute)

 	(graphtik.network.Network attribute)

 	(graphtik.network.Solution attribute)

 	__call__() (graphtik.network._OpTask method)

 	(graphtik.operation method)

 	__delitem__() (graphtik.network.Solution method)

 	__dict__ (graphtik.network.ExecutionPlan attribute)

 	__init__() (graphtik.network._OpTask method)

 	(graphtik.network.Network method)

 	(graphtik.network.Solution method)

 	__module__ (graphtik.network._DataNode attribute)

 	(graphtik.network.AbortedException attribute)

 	(graphtik.network.ExecutionPlan attribute)

 	(graphtik.network.IncompleteExecutionError attribute)

 	(graphtik.network.Network attribute)

 	(graphtik.network.Solution attribute)

 	(graphtik.network._EvictInstruction attribute)

 	(graphtik.network._OpTask attribute)

 	__repr__() (graphtik.network._DataNode method)

 	(graphtik.network.ExecutionPlan method)

 	(graphtik.network.Network method)

 	(graphtik.network.Solution method)

 	(graphtik.network._EvictInstruction method)

 	(graphtik.network._OpTask method)

 	__slots__ (graphtik.network._DataNode attribute)

 	(graphtik.network._EvictInstruction attribute)

 	(graphtik.network._OpTask attribute)

 	
 	__str__() (graphtik.network.IncompleteExecutionError method)

 	__weakref__ (graphtik.network.AbortedException attribute)

 	(graphtik.network.IncompleteExecutionError attribute)

 	_abc_impl (graphtik.network.ExecutionPlan attribute)

 	(graphtik.network.Network attribute)

 	(graphtik.network.Solution attribute)

 	_append_operation() (graphtik.network.Network method)

 	_apply_graph_predicate() (graphtik.network.Network method)

 	_build_execution_steps() (graphtik.network.Network method)

 	_build_pydot() (graphtik.network.ExecutionPlan method)

 	(graphtik.network.Network method)

 	(graphtik.network.Solution method)

 	_cached_plans (graphtik.network.Network attribute)

 	_check_if_aborted() (graphtik.network.ExecutionPlan method)

 	_DataNode (class in graphtik.network)

 	_do_task() (in module graphtik.network)

 	_EvictInstruction (class in graphtik.network)

 	_execute_sequential_method() (graphtik.network.ExecutionPlan method)

 	_execute_thread_pool_barrier_method() (graphtik.network.ExecutionPlan method)

 	_handle_task() (graphtik.network.ExecutionPlan method)

 	_OpTask (class in graphtik.network)

 	_optionalized() (in module graphtik.network)

 	_prepare_tasks() (graphtik.network.ExecutionPlan method)

 	_prune_graph() (graphtik.network.Network method)

 	_topo_sort_nodes() (graphtik.network.Network method)

 	_unsatisfied_operations() (in module graphtik.network)

 	_yield_datanodes() (in module graphtik.network)

A

 	
 	abort run

 	abort_run() (in module graphtik.config)

 	AbortedException

 	
 	arg (class in graphtik.modifiers)

 	aslist() (in module graphtik.base)

 	astuple() (in module graphtik.base)

B

 	
 	build_pydot() (in module graphtik.plot)

C

 	
 	canceled (graphtik.network.Solution attribute)

 	canceled operation

 	collect_requirements() (in module graphtik.network)

 	COMPILATION

 	compile

 	compile() (graphtik.netop.NetworkOperation method)

 	(graphtik.network.Network method)

 	compose

 	
 	compose() (in module graphtik)

 	(in module graphtik.netop)

 	COMPOSITION

 	computation

 	COMPUTE

 	compute() (graphtik.netop.NetworkOperation method)

 	(graphtik.op.Operation method)

 	configurations

D

 	
 	dag

 	(graphtik.network.ExecutionPlan attribute)

 	
 	default_jupyter_render (in module graphtik.plot)

E

 	
 	endurance

 	evict (graphtik.network.ExecutionPlan attribute)

 	evictions

 	evictions_skipped() (in module graphtik.config)

 	execute

 	execute() (graphtik.network.ExecutionPlan method)

 	
 	executed (graphtik.network.Solution attribute)

 	EXECUTION

 	execution dag

 	execution plan

 	execution pool

 	execution steps

 	ExecutionPlan (class in graphtik.network)

F

 	
 	finalize() (graphtik.network.Solution method)

 	
 	finalized (graphtik.network.Solution attribute)

G

 	
 	get() (graphtik.network._OpTask method)

 	get_execution_pool() (in module graphtik.config)

 	graph

 	graphtik.base (module)

 	graphtik.config (module)

 	
 	graphtik.modifiers (module)

 	graphtik.netop (module)

 	graphtik.network (module)

 	graphtik.op (module)

 	graphtik.plot (module)

H

 	
 	hashid (graphtik.base.Token attribute)

I

 	
 	IncompleteExecutionError

 	inputs

 	is_abort() (in module graphtik.config)

 	is_endure_operations() (in module graphtik.config)

 	(in module graphtik.network)

 	is_failed() (graphtik.network.Solution method)

 	is_marshal_tasks() (in module graphtik.config)

 	(in module graphtik.network)

 	
 	is_parallel_tasks() (in module graphtik.config)

 	(in module graphtik.network)

 	is_reschedule_operations() (in module graphtik.config)

 	(in module graphtik.network)

 	is_skip_evictions() (in module graphtik.config)

 	(in module graphtik.network)

J

 	
 	jetsam() (in module graphtik.base)

L

 	
 	last_plan (graphtik.netop.NetworkOperation attribute)

 	
 	legend() (in module graphtik.plot)

 	logname (graphtik.network._OpTask attribute)

M

 	
 	marshalled() (graphtik.network._OpTask method)

 	marshalling

 	
 	modifiers

 	MultiValueError

N

 	
 	name (graphtik.netop.NetworkOperation attribute)

 	needs

 	(graphtik.network.ExecutionPlan attribute)

 	(graphtik.network.Network attribute)

 	net

 	(graphtik.network.ExecutionPlan attribute)

 	netop

 	
 	network

 	Network (class in graphtik.network)

 	network graph

 	network operation

 	NetworkOperation (class in graphtik.netop)

 	NO_RESULT (in module graphtik.base)

 	node predicate

O

 	
 	op (graphtik.network._OpTask attribute)

 	operation

 	(class in graphtik)

 	Operation (class in graphtik.op)

 	operation_executed() (graphtik.network.Solution method)

 	operation_failed() (graphtik.network.Solution method)

 	operations_endured() (in module graphtik.config)

 	
 	operations_reschedullled() (in module graphtik.config)

 	optional (class in graphtik.modifiers)

 	optionals

 	outputs

 	(graphtik.netop.NetworkOperation attribute)

 	overwrites

 	(graphtik.network.Solution attribute)

P

 	
 	parallel

 	parallel execution

 	partial operation

 	partial outputs

 	plan

 	(graphtik.network.Solution attribute)

 	plot() (graphtik.base.Plotter method)

 	Plotter (class in graphtik.base)

 	
 	predicate

 	(graphtik.netop.NetworkOperation attribute)

 	process pool

 	provides

 	(graphtik.network.ExecutionPlan attribute)

 	(graphtik.network.Network attribute)

 	(graphtik.op.FunctionalOperation attribute)

 	prune

 	pruning

R

 	
 	real_provides (graphtik.op.FunctionalOperation attribute)

 	render_pydot() (in module graphtik.plot)

 	reparse_operation_data() (in module graphtik.op)

 	reschedule

 	
 	rescheduling

 	reset_abort() (in module graphtik.config)

 	result (graphtik.network._OpTask attribute)

 	returns dictionary

S

 	
 	scream_if_incomplete() (graphtik.network.Solution method)

 	sequential

 	set_endure_operations() (in module graphtik.config)

 	set_execution_pool() (in module graphtik.config)

 	set_marshal_tasks() (in module graphtik.config)

 	set_parallel_tasks() (in module graphtik.config)

 	set_reschedule_operations() (in module graphtik.config)

 	set_skip_evictions() (in module graphtik.config)

 	sideffect (class in graphtik.modifiers)

 	
 	sideffects

 	sol (graphtik.network._OpTask attribute)

 	solid (graphtik.network._OpTask attribute)

 	solution

 	Solution (class in graphtik.network)

 	solution dag

 	steps

 	(graphtik.network.ExecutionPlan attribute)

 	supported_plot_formats() (in module graphtik.plot)

T

 	
 	task

 	tasks_in_parallel() (in module graphtik.config)

 	
 	tasks_marshalled() (in module graphtik.config)

 	thread pool

 	Token (class in graphtik.base)

U

 	
 	unsatisfied operation

V

 	
 	validate() (graphtik.network.ExecutionPlan method)

 	
 	vararg (class in graphtik.modifiers)

 	varargs (class in graphtik.modifiers)

W

 	
 	withset() (graphtik.netop.NetworkOperation method)

 	(graphtik.operation method)

Y

 	
 	yield_ops() (in module graphtik.network)

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Graphtik

 		
 Operations

 		
 The operation builder factory

 		
 Operations are just functions

 		
 Specifying graph structure: provides and needs

 		
 Instantiating operations

 		
 Decorator specification

 		
 Functional specification

 		
 Modifiers on operation needs and provides

 		
 Graph Composition

 		
 The compose factory

 		
 Simple composition of operations

 		
 Running a computation graph

 		
 Producing a subset of outputs

 		
 Short-circuiting a graph computation

 		
 Adding on to an existing computation graph

 		
 More complicated composition: merging computation graphs

 		
 Plotting and Debugging

 		
 Plotting

 		
 Errors & debugging

 		
 Execution internals

 		
 Architecture

 		
 API Reference

 		
 Module: op

 		
 Module: modifiers

 		
 Module: netop

 		
 Module: network

 		
 Module: plot

 		
 Module: config

 		
 Module: base

 		
 Changes

 		
 TODOs

 		
 GitHub Releases

 		
 Changelog

 		
 v5.2.0 (27 Feb 2020, @ankostis): Map needs inputs –> args, SPELLCHECK

 		
 v5.1.0 (22 Jan 2020, @ankostis): accept named-tuples/objects provides

 		
 v5.0.0 (31 Dec 2019, @ankostis): Method–>Parallel, all configs now per op flags; Screaming Solutions on fails/partials

 		
 v4.4.1 (22 Dec 2019, @ankostis): bugfix debug print

 		
 v4.4.0 (21 Dec 2019, @ankostis): RESCHEDULE for PARTIAL Outputs, on a per op basis

 		
 v4.3.0 (16 Dec 2019, @ankostis): Aliases

 		
 v4.2.0 (16 Dec 2019, @ankostis): ENDURED Execution

 		
 v4.1.0 (13 Dec 2019, @ankostis): ChainMap Solution for Rewrites, stable TOPOLOGICAL sort

 		
 v4.0.1 (12 Dec 2019, @ankostis): bugfix

 		
 v4.0.0 (11 Dec 2019, @ankostis): NESTED merge, revert